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SUBSONIC ANNULAR WING THEORY WITH APPLICATION 

TO FLOW ABOUT NACELLES 

By Michael J. Mann 
Langley Research Center 

SUMMARY 

Jet engine nacelles have generally been designed with the assumption that the intake 
and nozzle can be treated separately. However, advancements in engine development for 
subsonic cruise airplanes have tended toward high-bypass-ratio fan engines. This type of 
engine usually has a short fan nacelle which necessitates analyzing the complete nacelle. 
These nacelles can be treated as annular wings on which the circulation developed deter- 
mines both the internal and external flow. 

A method has recently been developed for  calculating the flow over such a nacelle at 
zero angle of attack and at subsonic Mach numbers. The method makes use of annular 
wing theory and boundary-layer theory and has shown good agreement with both experimen- 
tal data and more complex theoretical solutions. The method permits variation of the 
mass flow by changing the size of a center body. 

INTRODUCTION 

Jet engines have generally been designed with the assumption that the inlet and nozzle 
can be designed separately. Advancements in engine technology have recently tended 
toward high-bypass-ratio fan engines with short fan nacelles. For these nacelles, the com- 
plete nacelle must be examined. A complete nacelle can be viewed as an annular wing, the 
thickness and camber of which determine the internal and external flow. 

Several methods have been developed for calculating the flow over nacelles or  annular 
wings. The Douglas-Neumann method (ref. 1) has been used to predict accurately the pres- 
sures on the surface of a nacelle inlet. Trulin and Iversen (ref. 2), Geissler (ref. 3), and 
Young (ref. 4) have recently published methods which use surface singularities and show 
good agreement between theory and experiment for complete nacelles. Geissler's method 
includes the effects of angle of attack. 

Young (ref. 5) also examined the accuracy of a method which distributes the singu- 
larities along a-mean cylinder of constant diameter. However, Young did not present the 
details of the theory. Agreement between the theory and experiment is good at low Mach 
numbers but is inadequate at the higher Mach numbers. 



Mascitti (ref. 6) has developed a rapid numerical technique for calculating the sub- 
sonic flow over planar and axisymmetric profiles at zero angle of attack. The method 
solves the exact incompressible potential-flow equations written in terms of the stream 
function. 

Belotserkovskii (ref. 7) and Weissinger (ref. 8) have developed much of the theory 
of annular wing flow, Their application of the theory has been the determination of over- 
all force and moment characteristics rather than a study of surface pressure distribution. 
However, much of their theoretical work has been useful in the present study. 

Hess (ref. 9) discusses some of the early solutions for axisymmetric flow which 
made use of vortex rings on the surface. Keith and others (ref. lo),  and Grossman and 
Moretti (ref. 11) have developed numerical methods for solving the exact inviscid flow 
over two-dimensional and axisymmetric nacelles at subsonic and transonic speeds. Ref- 
erence 10 uses a stream-tube curvature relaxation technique, and reference 11 uses a 
time-dependent technique. However, the technique of reference 11 was only successful 
for subsonic flow. To the author's knowledge, only the present paper and references 3 
and 10 have included the effects of the boundary layer. 

The purpose of the present study is twofold. First, an inviscid theory, which uses 
vortex rings to represent the camber and a combination of source rings and vortex rings 
to represent thickness has been developed. Three-dimensional sources are distributed 
along the center line to control the mass flow through the wing. This method appears to 
have some advantage over each of the other methods in terms of either simplicity, a 
reduction of computer core storage or  central processor time requirements, ease of exten- 
sion to more complex flows, accuracy, or quantities computed. Secondly, an analysis of 
the importance of including the displacement effect of the boundary layer in the calcula- 
tions has been made. A boundary-layer iteration procedure has been included in the com- 
puter program. 

Results of the present theory have been compared with experimental data obtained 
in tests on four nacelles and good agreement has been found over a range of mass-flow 
ratios and Mach numbers. 

SYMBOLS 

A 

C 

cP 

internal-flow cross -sectional area, m2 ( f t2)  

wing chord, m (ft) 

P - Po0 
pressure coefficient, - 

%o 

2 



intake diameter equals highlight diameter less twice inlet lip radius, m (ft) 

average of minimum inner diameter and maximum outer diameter of wing; 
when subscripted, refers to diameter of wing, m (ft) 

unit vectors in meridional, r - and x-directions, respectively 

complete elliptic integral of second kind, p2 b x  du, dimensionless 

dimensionless correction term for yt (see eq. (32)) 

shape factor, S*/0 

1 
2 . 2  l - k s m u  

complete elliptic integral of first kind, I/ du, dimensionless 

modulus of complete elliptic integrals (see eq. (ll)), dimensionless 

complementary modulus, dl - k2 

free-stream Mach number 

mass flow through annular wing, kg/sec (slugs/sec); iteration number or 
summation index 

number of chordwise divisions for numerical solution 

static pressure, N/m2 (lbf/ft2) 

thickness function defined by equation (29), dimensionless 

source strength per unit axial distance, m/sec (ft/sec) 

radial coordinate attached to wing, m (ft) 

free-stream dynamic pressure, ' p,V: /2, N/m2 (lbf/ft2> 

wing thickness, router - rinner, m (ft) 
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Uo( 5 - 5 ) dimensionless kernel defined by equation (31) for po = 1 
071 

V ( 5  - 5 ) dimensionless kernel defined by equation (30) for po = 1 q ,  0 9 1  

V total velocity, free stream plus perturbation, m/sec (ft/sec) 

vca free - s t r  earn vel0 c ity , m/sec (ft/ s ec ) 

u( to,po\ perturbation velocity components in x- and r -directions, respectively, induced 

dimensionless perturbation velocity influence functions for x- and 
r -directions, respectively; these influence functions a re  for velocity 
induced at fo,po by a ring singularity at 5,p = 1 or by a point 
singularity at 5,p = o 

X inlet length, m (ft) 

x, y, z, r coordinates attached to wing (see fig. 1 and app. A for positive directions), 
m (ft) 

slope of mean camber surface with respect to x-axis (wing centerline), radians aO 

slope of symmetrical thickness profile with respect to x-axis, (dt/dx)/2 9 
radians 

dimensionless bound vortex strength of camber solution, yo A t  

dimensionless bound vortex sheet strength of camber solution, y +/VmaO 

rO 

Y O  

bound vortex sheet strength of camber solution, m/sec (ft/sec) 

vortex sheet strength for thickness, m/sec (ft/sec) 

y + 

Y t  

Y ratio of specific heats 
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A( 1 inner minus outer of ( ); A( = dimensionless panel length 

6 *  boundary -layer displacement thickness, m (ft) 

E small positive number 

6 momentum thickness, m (ft) 

h aspect ratio, D/c 

I-1 

5 

5' dummy variable form of 5 

mass-flow ratio (see eq. (41) 

dimensionless distance along axis, - X 

D/2 

dimensionless radius, -* gas density, kg/m3 (slugs/ft3) 
D/2' P 

U dummy variable 

1c/ 

Superscripts : 

( )' incompressible quantity except 5' and k' 

digamma function (see app. B) 

( A )  unit vector; velocity influence function 

vector, except ( 5 )  
q (7 

* critical Mach number condition; boundary -layer displacement thickness 

Subscripts : 

+ dimensional bound vortex sheet strength of camber solution 

co free stream 

b center body 
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exp experimental 

h highlight station (most forward point on inlet lip, x = c/2 in fig. 1) 

i 

j 

LE leading edge 

location of vortex and source singularities 

location of point at which velocity is induced 

m 

max maximum 

iteration number (see eq. (44)) 

min minimum 

q 

r 

TE 

t 

th 

W 

0 point at which velocity is induced in to,p0; effect due to camber only without 
angle-of-attack o r  pitching-motion effects in cyo, yo, and ro; zeroth 
order in Fourier expansions in Uo; also see equation (44) 

due to source ring of thickness solution 

radial direction 

trailing edge 

thickness solution; tangential 

X 

Y 

50 

PO 

6 

theory 

wing surface 

wing axial direction 

due to vortex ring 

axial location 

radial location 



THEORETICAL SOLUTION 

The subsonic flow over an axisymmetric nacelle or annular wing with a center body 
of revolution will be determined by use of small perturbation theory. This problem is 
analogous in many ways to airfoil theory and biplane theory. Linearization of the problem 
permits computation of the compressibility effects by transforming the wing coordinates 
x and r into an equivalent incompressible wing x' and r? by using the GGthert 
transformation 

x' = x (1) 

where p = /l - M:. The incompressible flow over this equivalent wing is then computed, 
and the compressible perturbation velocities u and v in the x- and r-directions, 
respectively, a r e  found by 

2 u = u y p  

v = v y p  (4) 

while the free-stream velocity V, remains unchanged. Compressible flow equations 
can then be used to determine the pressure distribution. (All primes a re  dropped from 
coordinates and velocities from this point on, and these variables are understood to be 
incompressible, unless otherwise stated.) 

Also as a consequence of the linearization of the equations of motion and the boundary 
conditions, the problem can be broken up into wing camber, wing thickness, and center-body 
portions. Furthermore, each of these problems can be solved by superimposing elementary 
singular solutions of Laplace's equation, such as vortexes and sources. The linearized 
boundary condition on the wing surface at the point to,po is 

where dr/dx is the local slope of the wing and to and po are dimensionless x- and 
r-coordinates. The minus sign arises because the positive x-direction has been chosen 
to be upstream (fig. 1). This boundary condition is written in two parts, one part for the ' 

camber and center body and one part for the thickness 
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where a0 and at are the slopes of the mean camber line and the symmetrical thick- 
ness, respectively. The subscripts y ,  b, q, and t,y refer to camber vorticity, center 
body, thickness source, and thickness vorticity, respectively. Two terms arise in the 
thickness equation because sources alone will not produce a symmetrically thick wing, 
This point is discussed further when the thickness solution is outlined. When plus and 
minus signs a re  used, the upper and lower signs refer to the outer and inner wing sur -  
faces, respectively. 

For design purposes it is convenient to separate the problem into its camber and 
thickness components. Thus, all singularities (except the center body) a r e  placed on a 
cylinder of constant diameter D as shown in figure 1 and the boundary conditions are 
satisfied at control points on this same cylinder (counterpart of the planar wing approxi- 
mation). A correction for approximating the surface velocities by velocities on this cylin- 
der, which is called the Riegels factor, is discussed subsequently. 

The strengths of the singularities a r e  found by solving the boundary conditions given 
by equations (6) and (7). The solution of these boundary conditions involves evaluating 
improper integrals. The technique used is simply to replace the integrals by summa- 
tions, thereby replacing the continuous vortex and source sheets and the source line by 
distributions of singularities. In the camber solution, proper placement of the vortex 

Control-point location (typical) 

Singular i ty location 
(typical) 

Z 

Cylinder where singularit ies 
are located and tangent- 
flow condition i s  applied 

Figure 1. - Coordinates, geometry, and singularity and control-point location. 
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singularities and control points will satisfy both the principal value of the integral and the 
Kutta condition (ref. 7, p. 106). The same lattice arrangement is used for the sources as 
for the vortexes. 

Once the velocity expressions are substituted into equations (6) and (7), a set of 
linear equations results with unknown singularity strengths. The vortex strengths are 
found by solving these equations by the method of successive orthogonalization. The 
source strengths for the wing thickness and the center body are proportional to the local 
body slopes. 

In the following sections the major equations are given. The camber-center-body 
solution, the thickness solution, the complete wing solution, and the boundary -layer calcu- 
lation a r e  discussed. 

Camber-Center-Body Solution 

The flow to be calculated is subsonic flow over an axisymmetric mean camber line 
at zero angle of attack. Along the center line of this infinitesimally thin wing is mounted 
a body of revolution. The mass flow inside the camber surface is varied by varying the 
size of the center body. 

In order to obtain a unique solution for the flow over a camber surface, the basic 
flow conservation equations must be satisfied, boundary conditions on the body and at 
infinity must be satisfied, and the circulation specified (accomplished by the Kutta condi- 
tion). As mentioned previously, these conditions can be met by distributing a continuous 
vortex sheet along a cylinder the length of which is equal to the wing chord. The influence 
of the center body can be found by use of a source line along the wing axis. 

In this study the influence of the wing on the center body is ignored. There are 
several reasons for ignoring this interference. First, owing to the wide variation in inter- 
nal structure, such as stings, struts, rakes, and so forth, no-attempt was made to simulate 
any particular internal structural geometry. Secondly, inclusion of the mutual interference 
would greatly increase the storage requirements of the computer program (see app. A), 
thereby losing one of the attractive features of this method. Furthermore, the primary 
objective has been to obtain an accurate solution for the external flow. Thus, a simple 
body of revolution on the wing axis was selected to represent the internal parts. The size 
of this body is selected to either match the desired mass flow or  match the internal block- 
age (and compute the mass flow). Both methods have shown good success as is demon- 
strated in the next section. 

The vortex sheet strength is found by first substituting the expressions for the vor- 
tex velocities (refs. 7 and 12) and source velocities (refs. 12 and 13) into the boundary 
condition, equation (6). When this is done, the result is 
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where the influence functions are defined by 

and K and E are complete elliptic integrals of the first and second kinds with modulus 

k2 = 4p0 
( E  - Eo)2 +(1 + Po) 2 

The variables E and p are the dimensionless x- and r-locations of singularities 
(p = l), and to,po is the point at which the velocity is calculated (po = 1). The vari- 
able X is the wing aspect ratio; y o ( t )  is the yortex strength and is related to the usual 
definition of vortex sheet strength by 

where 7, is proportional to Ap/pV,. 

The subscript o on y o  and cyo is used in reference 7 to indicate camber effects 
without angle of attack or pitching motion. For the sake of consistency this notation is 
retained. When angle-of-attack effects are included, the vortex sheet is no longer of con- 
stant strength around its circumference and a trailing vortex system must also be included 
(ref. 7). The camber effect alone will give a nonzero radial force; however, owing to 
symmetry the net lift is zero. 

Equation (8) is solved numerically by replacing the continuous vortex sheet by N 
equally spaced vortex rings. The source line along the center-body axis is replaced by 
three-dimensional point sources at the same axial locations as the vortex rings. The 

'Center-body length can be less than the wing chord, c. The case of a semi-infinite 
center body can be simulated by a constant body radius to downstream infinity because the 
local source strength is zero where dpb/dE = 0. 
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singularity location is i and the control-point location is j. When the quantity yo d( 
is replaced by 

equation (8) becomes 

Because the vortex rings and control points are located on a constant-diameter right 
circular cylinder of diameter D, then pi = 
panel has a chord length of c/N. The vortex rmg is located at one-fourth of this length 
from the panel leading edge and the control point is located at three-fourths of this length 
from the panel leading edge (fig. 1). 

= 1 in equation (12).2 Each circular 
poj 

As previously mentioned, the influence of the wing on the body is neglected. Thus 
the body source strengths are given by the body slopes and everything on the right-hand 
side of equation (12) is known. Equation (12) is then a set  of N simultaneous linear equa- 
tions with N unknown vortex strengths rOi 
cussion of case when cyo = 0). 

strengths rOi by the successive orthogonalization procedure outlined in reference 1. 
This procedure gave the same results as an alternate matrix inversion technique but has 
a great advantage on computer storage requirements. The method of reference 1 requires 
storage for a single N-dimensional array, the elements of which are 9 (t i  - toj,l)cyoi 
as opposed to other matrix techniques which require N- by N-array storage. 

see definition of CAM in app. A for dis- ( 
The set of equations resulting from equation (12) was solved for the unknown vortex 

Y 

Once the vortex and source strengths are computed, the perturbation velocities can 
be found at each location 5 on the cylinder p = 1 by use of the following expressions 

o j  oj 

2The radius p of a singularity ring always has a value of 1 in this paper; however, 
varies between 0 and 1 in the the radius of the point at which the velocity is computed 

mass-flow computation but has a value of 1 elsewhere. po 
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where the influence functions are 

312 
$ti - toj)2 + 3 

= 1 (necessary when computing mass flow), equa- po i  
tions (13) to (16) apply with the i term dropped in equation (13) and using the influence 
functions 

q t i  - tOj,POj) = 
2 - k2 ---,,E 1 k2 - 2.3 

4& Poj 1 - k2 

3The variables 5 and p locate a singularity, and to,p0 is the point at which 

ti,pi 
= 1, the location toj,poj is a control point; but 

the velocity is calculated. When going from integrals and continuous distributions to sum- 
mations and discrete distributions, it is necessary to indicate these quantities by 
and 5 .,p 
when :J .Y’l, then toj,poj is meant to indicate any arbitrary point. 

OJ 

respectively. When p 
o j  

12 



9 ( 5 .  - 5 . p . ) and qb( ti - 5 . p .) as given in equations (9) and (10). Equation (13) 
is derived in appendix B by using the influence function in equation (21). 

Y 1 OJ’ OJ OJ’ OJ 

A linear interpolation of the rOi was used to find the roj. A check of the rOi 
distributions showed that the distribution approaches zero at the trailing edge, thereby 
satisfying the Kutta condition. Note that the pressure distribution over the camber sur- 
face depends on three quantities: camber surface slopes, aspect ratio, and mass flow 
(controlled by the size of the center body). 

Thickness Solution 

The flow to be calculated in this case is the subsonic flow over an annular wing with 
a symmetrical airfoil section at zero angle of attack. The flow must satisfy the same 
basic equations and conditions as the camber solution. The tangent flow condition is now 
equation (7). 

In the case of planar problems, thickness can be accounted for by a distribution of 
sources on a plane. Such a distribution has the necessary symmetry property and discon- 
tinuous change of sign in the ‘vertical velocity for the planar wing thickness. However, if 
two planar source sheets are placed in close proximity to form a biplane, the interference 
between the two sets of source distributions will cause a mutual induction of camber. The 
vertical velocity at some point on either sheet will no longer depend solely on the local 
source strength but will also depend on the complete source distribution of the other sheet. 
This interference problem also exists for an annular wing. The induced camber effects 
can be canceled by a vortex distribution, the strength of which is adjusted to just cancel 
the interference effects on the wing. Then the total source and vortex radial velocity will 
have the necessary discontinuous property across the singularity sheet. 

Note that, because of the interference effects, an annular wing with thickness only at 
zero angle of attack has a negative radial force; that is, it tends to collapse. The internal 
flow area reduction due to thickness accelerates the flow much more than the same flow 
area reduction externally. Figure 2 shows the pressure distributions for an annular wing 
with thickness only and the same wing with enough camber to make the inside diameter 
constant. The radial force changes sign when geometric camber is added, and with the 
proper amount of geometric camber the inner and outer pressures can be equalized. 

Because the annular wing with thickness only has the effect of camber in its flow, 
namely a nonzero radial force, it would be convenient to refer to this effect as an aero- 
dynamic camber. Then the variations of the mean-camber line from the chord could be 
referred to as geometric 

The radial velocity 
source rings of diameter 

camber. 

induced at 5, and po = 1 by a continuous distribution of 
D (radius p = 1) over an axial length of c is (see app. B) 
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(a) 4.3-percent thickness and zero camber; IJ. = 0.87. 

Figure 2.- Pressure distribution on an annular wing without and with 
camber at M, = 0.50. 
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(b) 4.3-percent thickness and constant inside diameter; p = 0.70. 

Figure 2. - Concluded. 

15 



where q(5) is the source strength at 5 and the influence function 9 ( 5  - tO9l) is 
related to the vortex influence function for the velocity u by 

q 

The integral term in equation (23) is the induced camber due to interference effects. 
This integral can be canceled by a vortex distribution the strength of which is determined 
bY 

1 
- x &eq(5 - tO,l)d5 

- s 1 4nv, - -  
h 

where yt(t)  has the dimensions of y,, and Qt 
When this is done, equation (23) can be written as 

is computed by using equation (18). ,Y 

The flow constructed in this way will satisfy the required boundary condition in equa- 
tion (7). Thus from equations (7) and (26) the source strength is determined by 

where the boundary condition is being satisfied at points ( to ,po = 1). 

numerical problem found in the camber solution. A n  alternate method of finding yt( E )  
has been outlined by Weissinger (ref. 8). By examination of the boundary conditions for 
a vortex flow, the vortex strength necessary to cancel the integral of equation (23) is 
determined by 

The solution of equation (25) for the unknown vortex strength is the same type of 
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where 

- -  
A 

- 
"'b(1 + k2)E - ( 2  + k 2 ) d  

If; - 50 I 

Uo([- t 0 , l )  = l f [ k 2  4 - 5 0  k - 2)E + 2 ( 1  - k2)K] + 9 
and t([) is the wing thickness and g ( 5 )  is related to the vortex strength by 

q 

(The symbol -rt(E)/Vm is called g ( 5 )  in ref. 8 . )  The kernel functions V 
q q 

a r e  continuous and antisymmetrical. The solutions of equations (25) and (28) for rt(5) 
should require about the same computing time; equation (28) was chosen for this study. In 
numerical form, equations (28) and (29) yield 

and Uo 

The source and vortex-ring locations ( ,$,pi = 1 )  and control-point locations 
( eoj,poj = 1) a r e  the same as in the camber solution. The same method of solution of 
linear equations discussed previously was used for equation (33). 

Once the source and vortex strengths are computed, the perturbation velocities can 
Equations (13) and (14) give the vortex velocities u 

when ooi170i is replaced by ( yti/Vm) A t  and similarly for oOjroj. Recall 
= 1, the 5 term in equation (13) must be dropped. The 

t,Y be computed at any point ( to j,poj) 

and vt 
that for points off the cylinder p 
source velocities at points on the cylinder p 

,Y 
o j  

= 1 a r e  computed from (refs. 8 and 12) 
o j  
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where the influence function 9 is given by equation (24) and Q is q q 

-2kE 
Q ( 5 .  - tOj,l) = - 

i oj  q 1  

Equation (35) can be obtained from equations (23) and (27). For points off the cylinder 
defined by p = 1 (necessary when computing the mass flow), equations (34) and (35) 
apply with the te rm TCY in equation (35) dropped and by using the influence functions 

o j  
t j  

- 
? 1 2 

Note that the thickness solution depends on two quantities : thickness distribution 
t(5) and aspect ratio. 

Pressure Distribution and Mass Flow 

Once the singularity strengths are determined, the velocities due to camber, center 
body, and thickness can be added to give the total surface velocity and pressure distribu- 
tion. The internal flow velocities can be integrated over a surface perpendicular to the 
center line at some t-location to  calculate the mass flow through the annular wing. 
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In regions of high body curvature, such as the nose, approximation of the surface 
velocity by the velocity on a constant-diameter cylinder is not satisfactory. A correction 
for this approximation called the Riegels factor, is shown by Weber (ref. 14) to improve 
the calculated velocities in the nose region of a two-dimensional airfoil. 

The Riegels factor can be developed from geometry as follows. By writing the 
4 equation for the wing surface as 

f(x,r) = r - rW(x) = 0 

the unit tangential vector in the meridional direction is 

6+ = 

drw Q $x + - 
d x r  /- 

where Qx and 6 ,  are unit vectors in the x- and r-directions, respectively. Writing 
the total compressible surface velocity as 

the total tangential surface velocity is 

Consistent with linear theory the total surface velocity is approximated by 

The quantity in the denominator is the Riegels factor. Equation (39) shows that the 
total velocity on the wing surface is found by computing the total x-velocity on the cylin- 
der p = 1 and multiplying this result by the.Riegels factor. 

4All velocities from now on a r e  compressible and coordinates a r e  for the actual 
(untransformed) geometric shape. 
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The surface pressure distribution is computed by making compressibility and Riegels 
factor corrections to the incompressible velocities and calculating the pressure from 

where y is the ratio of specific heats. 

The mass flow is computed in the form of a ratio 

J 

is the total x-velocity at some where m is the mass flow through the annular wing, 

5 ,  location, and Ah is a reference area based on the highlight diameter (diameter at 
x = c/2 in fig. 1). The area  A5 is the internal cross-sectional area of the wing at to 
less the local center-body cross-sectional area. The velocity ratio is computed by divid- 
ing the flow area  into small  annuli and calculating the mass flow through each annulus and 
summing the result as follows (assuming density constant over the cross section) 

v t O  

0 

oj 
The V(to,poj) a r e  the total x-velocities computed at a fixed 5, and the particular p 

,p .) is at the [,,poj location. The density ratio is location. The annulus area A 5 
calculated from the one-dimensional relation 

( 0 01 

L J 

Boundary -Layer Solution 

The boundary layer was approximated by a turbulent boundary layer over the entire 
chord length. The incompressible turbulent boundary -1ayCr method of Truckenbrodt 
(ref. 15) was used. 
the necessary equations for computing the boundary layer and programed these equations 
for the boundary-layer subroutine used in this study. 

20 
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The inviscid velocity distribution at the trailing edge is greatly in e r ro r  since a 
stagnation point is computed there. Hence, the velocity was extrapolated to the trailing 
edge (ref. 16). A procedure similar to that used in reference 17 was employed. In each 
case an estimate was made of the point beyond which the inviscid velocity became unrea- 
sonable because of the trailing-edge stagnation point. Then a least-square-curve fi t  of 
the velocities was made between that point (97-percent-chord station) and the 80- or 90- 
percent-chord station. This least-square-curve f i t  was then used to recompute the veloc- 
ities between the 80- or  90-percent station and the trailing edge. The outer surface was 
computed first so that the Nth value of the recomputed outer surface velocity (value closest 
to trailing edge) could also be included in the inner surface curve fit. A linear-curve f i t  
was used on the outer surface and a parabolic fit on the inner surface. This procedure 
produced smooth and reasonable velocities for the boundary -layer calculation. It was 
determined that uncertainties in this method gave 2-percent or less e r ror  in 1-1. The fig- 
ures to be presented indicate the range in which the curve fi t  was made. 

It should be clearly understood, however, that this trailing-edge procedure is simply 
(For a an approximate scheme in place of calculating the true effect of the correct wake. 

nonzero trailing-edge thickness the total source strength is nonzero, and therefore some 
wake is simulated.) It may be possible to simulate the correct wake effect by use of a 
wake annular thickness distribution which has just enough geometric camber to cancel the 

due to thickness, thereby making the inner and outer pressures equal. 

In order to obtain convergence of the boundary-layer displacement thickness, it was 
ACP 

necessary to modify the wing coordinates, on the mth iteration, with the following effective 
displacement thickness 

* .  * * * 6, + 261 + .  . . + (m + 1)6, 
f i =  - 

1 + 2 + .  . . + ( m + l )  
(44) 

* 
where Go is based on velocities computed by using the actual wing geometry. On the 
first iteration the wing coordinates were modified by 60/2, rather than 6, as indicated 
in equation (44). When separation occurred during the iteration process (shape factor 
H 2 2.4), the shape factor was limited to 2.55 to permit convergence. 

* * 

Computer Program 

The complete computer program is described in appendix A. Input and output quan- 
tities and the program listing a r e  included. One output quantity is the critical Mach num- 
ber, which is determined by an approximate method of von K&m& (ref. 18). The printed 
value of the critical Mach number is valid only when M, is low enough for the flow to be 
assumed incompressible. 
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The number of chordwise divisions N was 150. For the nacelles of this study the 
magnitude of the leading-edge suction peak had reached a stationary value by this value of 
N. For the mass-flow computation the radial increments were rimer 170. Since the 
velocity generally had a very small  variation across the flow area (substantiating the usual 
one-dimensional-flow assumption), these radial increments were more than sufficient. 

I 

Calculations on a CDC-6600 computer required 2 minutes for an inviscid calculation 
and 4 minutes for a viscous calculation. Each additional iteration on the viscous calcula- 
tion required about 2 minutes. This time could be reduced by use of a cosine distribution 
of singularities which would increase the singularity density in regions of strong pressure 
gradients and reduce the density in the center of the body. Such a distribution of vortexes 
will produce the same downwash at points midway between the vortexes as a continuous 
distribution of vorticity (app. B of ref. 19). 

COMPARISON OF THEORY AND EXPERIMENT 

Calculations were compared with experimental data obtained in two wind tunnels 
(refs. 5 and 20) to provide a check on the present theory. The comparison with the tes ts  
of reference 5 is discussed first. These tests covered a range of subsonic Mach numbers 
at primarily zero angle of attack. Figure 3(a) shows a sketch of the experimental setup 
and its relation to the theoretical model used to represent it. The mass flow in the experi- 
ment was controlled by the insertion of stationary se t s  of fan blades. The blockage of the 
sting, struts, and fan blades was represented in the theory by the blockage of,a center 
body. In the experiment, the highest mass flow was obtained without a set of blades 
installed. In this condition the experimental setup was more faithfully modeled by the 
theory than with sets of blades installed, and the best agreement between measured and 
calculated internal pressures would be expected. This expected result was achieved as 
will be discussed. 

The pressure distribution and mass flow are not sensitive to variations in the diame- 
te r  D of the vortex and source rings (see fig. 1). The value of D used in this study 
was the average of the minimum inside diameter and the maximum outside diameter of the 
wing. 

Nacelles 2 and 3 of reference 5 were selected for the present study (fig. 3(b)). These 
nacelles were designed to have prescribed external pressure distributions and internal 
contraction ratios. Comparisons between theory and experiment were made for three 
Mach numbers and several  mass-flow ratios. The exact sting leading edge and nose shape 
were not given. Thus the nose of the center body in the theoretical model was placed at 
approximately the position of the sting leading edge and the shape was arbitrarily selected 
to be that of a NASA supercritical body of revolution (ref. 21). At the maximum diameter 
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I nternal-blockage 

in theory of figs. 4 
to 14, 17, and 18 

(a) Relation of experimental setup to theoretical model. (Not to scale.) 

(b) Profile shapes for nacelles 2 and 3. 

Figure 3.- Geometry of experimental setup and theoretical model. 

station of the center body, a constant-diameter cylinder was attached and extended down- 
stream. As seen in figure 3(a), the constant diameter portion of the center body extended 
to infinity for the high-mass-flow cases of figures 4 to 14. However, for the low-mass- 
flow cases of figures 15 and 16 the center body was expanded at the approximate location 
of the fan blades. The necessity.of this expansion for the low-mass-flow cases is discussed 
subsequently. 
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The quoted accuracy of the measured mass flows in reference 5 is 1.5 percent based 
on boundary layer and instrument errors .  However, Young also states that the presence 
of the fan blades tended to separate the flow. Hence, for the lower mass flows tested, 
larger e r ro r s  in the mass-flow ratio p may be present. Errors in p would be reflected 
in a lack of agreement of measured and calculated pressures, especially on the inner sur -  
face and at the leading-edge suction peak. 

In the experiments the transition bands were applied from 6.25 to 10.4 percent of the 
chord. Therefore in the theory the boundary layer waq approximated by a turbulent bound- 
ary layer over the entire chord length, as discussed previously. The Reynolds number 
based on chord length was fixed at the experimental value of 2 X lo6. 

In all the pressure-distribution curves shown herein, with the exception of fig- 
ure  2(a), the upper and lower curves correspond to the outer and inner surfaces, 
respectively. 

A comparison of the theory and experiment is presented in figures 4 to 12. Mach 
numbers of 0.3, 0.5, and 0.7 were examined. In selecting the center-body diameter, two 
approaches are available. 
ply to  vary the body size until the desired mass flow is achieved. Only a few trial solu- 
tions are necessary to establish a curve of mass flow versus maximum body radius from 
which the maximum body radius can be selected to yield the desired mass flow. The 
second approach is to match the internal blockage a rea  between the experimental geometry 
and a body of revolution and calculate the mass flow. Figures 4 to 7 used the first 
approach, and figures 8 to 11 used the second. Each figure gives the number of iterations 
on the boundary layer and the chordwise range from which velocities were used to obtain 
the least-square-curve fits. The iteration was continued until the maximum change in 6 *  
on either surface was less than 2 percent of the maximum 6 *  for the respective surfaces, 
Good agreement is obtained between measured and calculated pressures when the boundary 
layer is included. 

First, if the desired mass flow is known, the procedure is sim- 

Note that figures 6, 7, 10, and 11 have slightly supercritical flow as shown by the 
A weak shock seems to occur near the value of the critical pressure coefficient C* 

leading edge. However, aft of this region agreement is good. 
P' 

Insight into the effect of the boundary layer on the mass flow is provided by exami- 
ning figures 8 to 11. These figures indicate that for a fixed geometry, the presence of the 
boundary layer increases the mass flow, contrary to what might at first be expected. 
Recall the case of a two-dimensional airfoil where the boundary layer causes an effective 
decrease in angle of attack; that is, the boundary layer reduces the lift and therefore the 
area under the curve of C versus 5 (ref. 17). As seen from figures 8 to 11, the 
boundary layer has the same effect on an annular wing, only in this case the radial force 
is being lowered. As this happens, the leading-edge stagnation point moves more toward 

P 
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Figure 4.- Pressure distribution on nacelle 3; M, = 0.3; pth = pexp = 0.76. 
Boundary layer: Six iterations; least square 90- to 97-percent c. 
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Figure 5.- Pressure distribution on nacelle 2; M, = 0.5; pth = pexp = 0.73. 
Boundary layer: Six iterations; least square 90- to 97-percent c. 

26 



xlc 

Figure 6.- Pressure distribution on nacelle 2; M, = 0.7; ph = pexp = 0.74. 
Boundary layer: Five iterations; least square 80- to 97-percent c. 
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Figure 7. -  Pressure distribution on nacelle 3; M, = 0.7; pth = pew = 0.76. 
Boundary layer: Five iterations; least square 80- to 97-percent c. 
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Figure 8.- Pressure  distribution on nacelle 3; M, = 0.3; ( 'b/ max = 12.79 percent; 

Pexp = 0.76. Boundary layer: Six iterations; least square 90- to Q7-percent c. 
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Figure 9.- Pressure distribution on nacelle 2; M, = 0.5; ( rb/c) = 12.61 percent; 
max 

Pexp = 0.73. Boundary layer: Six iterations; least square 90- to 97-percent c .  
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Figure 10.- Pressure distribution on nacelle 2; M, = 0.7; = 12.61 percent; 
pexp = 0.74. Boundary layer: Five iterations, least square 80- to 97-percent C.  
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Figure 11.- Pressure distribution on nacelle 3; M, = 0.7; = 12.79 percent; 
pexp = 0.76. Boundary layer: Five iterations; least square 80- to 97-percent c.  
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0 Nacelle 2 
A Nacelle 3 

Clear symbols: '..'ithou 
boundary layer 

Solid symbols: With 
boundary layer 

'th 

'exp 

Figure 12.- Summary of calculated mass-flow ratios for cases where internal blockage 
was estimated, including effect of boundary layer. 

the outer surface. Thus far ahead of the body the capture streamline for the internal mass 
flow is at  a larger radius and more flow is swallowed by the wing. A summary of the effect 
of the boundary layer on the mass flow is shown in the following sketch: 

M, fixed 

Without boundary layer 

\ -With boundary laver 

M 
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Both methods of selecting the center-body size show good results and neither seems 
superior to the other. The center-body size used in figures 8 to 11 was estimated from 
information given in reference 5. The accuracy with which the mass flow was calculated 
is summarized in figure 12 which shows that inclusion of the boundary layer in the calcu- 
lations improved this accuracy. 

Figures 13 and 14 compare the present theory with the methods of references 5 and 
10 for the flow condition of figure 4. Figure 13 is without the boundary layer and figure 14 
is with it. All methods are seen to give very close to the same results; therefore, the use 
of surface singularities gives essentially the same result in this case as the present 
method, which uses singularities placed on a mean diameter cylinder. 

When comparing different theoretical solutions of the flow over a nacelle, caution 
must be exercised to ensure that the mass flow from each solution is the same. Because 
the mass flow is a function of the circulation, different methods of approximating the Kutta 
condition can result in different mass flows on the same geometry. 

The experiments of figures 4 to 11 were run without fan blades present (highest 
mass-flow runs). When fan blades were present, it was found that the straight center- 
body model used previously was not sufficient to calculate accurately the internal nacelle 
surface pressures. Hence the center body was modified to approximate the experimental 
sting up to the fan-blade location, which was estimated to be at about the 75-percent-chord 
location (the exact sting diameter and fan-blade location were not given in ref. 5). In this 
region the fan blade blockage was simulated by expanding the center body into an ellipsoid 
with a circular cross section (see fig. 3(a)). The ellipse in the x-r plane had a semi- 
minor axis of about 13 percent of the chord and a semimajor axis (r-direction), which was 
adjusted to give the experimental mass flow. Where the ellipsoid intersected the plane of 
the nozzle exit, a constant-diameter cylinder was extended to infinity. Figures 15 and 16 
show the results of using this model for two low-mass-flow cases. The external pressure 
distributions a re  well predicted in spite of the discrepancies on the internal surface. Fur- 
thermore a fairly reasonable estimate of the internal pressure distribution is obtained. In 
figure 16 some large experimental e r ro r s  may occur in p because of internal-flow sepa- 
ration as mentioned previously. This would explain the discrepancy at  the leading-edge 
suction peak. 

Calculations were also compared with experimental data obtained from reference 20. 
The investigation 0% reference 20 was made on several NACA 1-series inlet contours tested 
over a range of subsonic and transonic Mach numbers, mass-flow ratios, and angles of 
attack. The thickness ratio (t/c),, of the two nacelles of reference 20 selected for the 
present study was much smaller than the thickness ratio of nacelles 2 and 3 (2 percent com- 
pared with 11 percent). As shown in figure 3(a), the nacelles were sting supported with a 
throttle plug at the rear  of the model for controlling the mass flow (the strut arrangement 
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Figure 13.- Pressure distribution on nacelle 3; Mm = 0.3; 
= 0.76. All theories without boundary layer. th 
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Figure 14.- Pressure distribution on nacelle 3; M, = 
pth = 0.76. Both theories with boundary layer. 

. 4; 

0.3; 
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Figure 15.- Pressure distribution on nacelle 2; M, = 0.5; pth = pexp = 0.64. 
Boundary layer: Five iterations; least square 90- to 97-percent c. 
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Figure 16.- Pressure distribution on nacelle 3; M, = 0.30; pth = pew = 0.57. 
Boundary layer: Five iterations; least square 90- to 97-percent c .  
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differed from that of fig. 3(a) in that fore and aft sets of struts were used). The plug was 
moved forward and backward to vary the mass flow. As previously, the blockage of the 
sting, struts, and plug was represented in the theory by the blockage of a center body. 
High-mass-flow ratios were selected for study to minimize the effect of the plug on the 
afterbody pressures 

The models of reference 20 consisted of the same afterbody attached to various 
inlets. The inlets had NACA l-series outer profiles and various inner profiles depending 
upon the contraction ratio. The two inlets selected for the present study were the NACA 
1-81-100 with a contraction ratio of 1.012 and the NACA 1-85-100 with a contraction ratio 
of 1.009. The numbers in the NACA designation indicate first the series,  then d/Dm, 
in percent, and finally X/Dm, in percent. The quantity d is the highlight diameter 
less twice the inlet lip radius; 
in this case) maximum diameter. 

X is the inlet length; and Dmax is the inlet (and nacelle, 

The nose of the center body in the theoretical model was again placed at the position 
of the sting leading edge and had the same shape as used previously. (See fig. 3(a).) 

The tests of reference 20 were conducted without artificial boundary -layer transi- 
tion. A limited amount of data obtained with a transition band located 2.54 cm aft of the 
lip (the maximum nacelle diameter was 45.72 cm) showed no difference in pressure when 
compared with free transition data. Thus, it again seemed reasonable to assume a turbu- 
lent boundary layer over the entire chord length for the viscous calculations. The Reynolds 
number was a function of Mach number. For M, of 0.40 and 0.80 the Reynolds number 
was 7.437 X lo4/,, and 1.159 X lo5/,,, respectively. 

The comparison between theory and experiment is shown in figures 17 and 18 
for M, of 0.80 and 0.40. The theoretical center-body size was  selected to give the 
mass-flow ratio measured in the experiment. The data on the inner surface and the data 
labeled "other" were obtained from the author of reference 20. The data points labeled 
"other" are an average of measurements made at that x/c location on the sting, mass- 
flow rake, and inner surface (these measurements were not separately available). Good 
agreement was obtained on the outer surface for both cases when the boundary layer was 
included. The very large adverse pressure gradient on the inner surface of the inlet in 
figure 17 occurs at the higher Mach numbers. The boundary-layer calculation indicated 
flow separation in this region. Thus, the boundary layer on the outer surface did not con- 
verge to any better than a maximum change in 6 "  of 12 percent of the maximum 6*. 
This lack of convergence was due to erroneous changes in the thickness and camber caused 
primarily by incorrect values of 6 *  on the inner surface. Hence, flow separation and a 
possible influence of the mass-flow plug on the measured pressures at the trailing edge 
could explain the discrepancies between the theory and experiment in figure 17. 

In figure 18 the boundary layer converged on both surfaces to a maximum change in 
6 *  of less than 0.2 percent of the maximum 6*  for the respective surfaces. The 
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Figure 17. - Pressure distribution on NACA nacelle 1-81-100; contraction ratio, 1.012; 
pth = pexp = 0.901. Boundary layer: Three iterations; least square M, = 0.80; 

90- to 97-percent c. 
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Figure 18. - Pressure distribution on NACA nacelle 1-85-100; contraction ratio, 1.009; 
= 0.815. Boundary layer: Six iterations; least square EJ. exp M, = 0.40; pth = 

90- 'to 97-percent c. 
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discrepancy at the leading-edge suction point could be due to inaccuracies in the leading- 
edge shape. The pressure in this region is very sensitive to slight e r ro r s  in the manu- 
facture. The inner surface pressures are approximately predicted by the theory. The 
calculated velocities in this region a re  somewhat higher than the actual velocities because 
the center-body radius used in the theory was larger than the sting radius. 

nacelle 2 by using von &rm&'s method (ref. 18). The free-stream Mach number must 
be low enough to assume incompressible flow. The critical conditions are based on the 
external pressure distribution. The curve labeled "Minimum C is from the leading- 
edge suction peak. The intersection of this curve and the curve for C * gives a critical P 
Mach number for nacelle 2 of 0.632. The method of von K&m& yields a critical Mach 
number of 0.658. 

Finally, figure 19 shows the accuracy of calculating the critical Mach number on 

P 

In the case of a propulsive device the addition of energy to the internal flow will 
have an effect on the pressure distribution over the nacelle. Energy addition is treated in 
references 10 and 22. Shollenberger (ref. 22) has made a theoretical and experimental 
study of a two-dimensional propulsive lifting system. The external pressure distribution 
was found to have a relatively weak dependence on the intensity of energy addition to the 
internal flow; however, the inner surface pressure distribution was strongly affected. The 
theoretical formulation of the present study could be extended to include energy addition by 
use of a method similar to that of reference 22. 

CONCLUSIONS 

A method analogous to classical airfoil theory has been developed for computing the 
pressure distribution on an annular wing with a center body at zero angle of attack and 
subsonic speeds. The following conclusions a r e  drawn: 

1. For the geometries investigated, this method was found to give essentially the 
same results as a method using a surface distribution of singularities and a stream-tube 
method. 

2. Comparison of the results with experimental data for a range of flow conditions 
and thickness ratios showed that when the boundary-layer displacement effects are included 
in the calculations, the pressure distribution and mass flow can be calculated with good 
accuracy. An accurate prediction is dependent on the existence of attached flow and a 
fairly accurate modeling of the internal-blockage geometry. 
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Figure 19.- Critical Mach number for nacelle 2 with ( r b/ c = 3.354 percent. 
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3. For cases in which the internal blockage was not accurately modeled or flow sepa- 
ration may have been present, the inner pressures were not accurately calculated. How- 
ever, the outer pressures were still calculated to a fairly good degree of accuracy. If 
internal flow separation occurs, the experimentally measured mass flow will be in error ,  
and this e r ror  must be accounted for when comparing experimental and theoretical results. 

4. When calculating the boundary-layer thickness, the inviscid velocities were extrap- 
olated to the trailing edge. A more accurate calculation would include the effect of the 
wake. 

5. The method requires modest computer running times and storage and can be 
generalized to include such effects as lift and internal energy addition. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., May 9, 1974. 
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APPENDIX A 

COMPUTER PROGRAM 

Input Variables 

The input data format is the Namelist method'used by the Control Data series 6600 
computer system at the Langley Research Center. The input variables are listed in this 
appendix and the input format can easily be modified to any other format. The body radius 
and wing inner and outer coordinates are each listed in sequential order to correspond with 
the x-values listed. The x-values are input from the leading edge to the trailing edge. The 
first quantities in the arrays X, RB, RI, and RO are X(1), RB(l), RI(l), and RO(l), 
respectively. The positive direction for a radius is shown in figure 1; however x is 
measured from the leading edge, positive downstream. Any length units can be used so  
long as the same units are used for all variables. Meters a r e  indicated, however, for 
dimensional quantities. 

The program uses 1.4 for y ,  the ratio of specific heats; however, a gas which has 
a value of y different from 1.4 can be treated by changing y in the pressure-coefficient 
equations and the mass-flow equation. Incompressible cases can be run by simply inputting 
zero for the free-stream Mach number. Special cases, such as camber with zero thickness 
or thickness with zero camber, can be treated by simply inputting the correct outer and 
inner surface coordinates. Some limitations a re  discussed. (See CAM.) For no center 
body, input all values of RB equal to 0 or set SCALE equal to 0 (both RB and SCALE 
must be input). 

AIAM Ah/Amin = ( Dh/Dmin)2 

C wing chord, m 

CAM use 1. when there is camber; use 0. when desire all To = 0, which is an 
inviscid thickness-only case with no center body. Note that zero geometric 
camber all c y o  = 0) is just a special case of equation (6). However, because 

vy/V, would become inde- of the method of defining the vortex strengths, 
terminant if  cyo = 0. Thus the form of the equation for v y/vm will not 
permit use of equation (6) (as given by eqs. (8) o r  (12)) to account for the 
center-body interference for zero camber. Therefore a geometry which 
has a center body but no geometric camber (all a. = 0) cannot be treated 
by this computer program. Likewise, if  portions of a cambered wing have 
a mean camber line with zero slope, a very small slope must be used in 
these regions. These limitations could be removed by replacing a o y o  by 
y+/V, in the vortex equations (see definition of y 

( 

0) 
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APPENDIX A - Continued 

DMAX maximum wing outside diameter, m 

DMIN minimum wing inside diameter, m 

FIN1 use 1. for the last data set and 0. for preceding data sets when more than one 
set  in input; one data set is shown in sample input 

ITMAX number of times boundary layer is computed; potential flow is computed 
ITMAX + 1 times; use 0.  for inviscid solution 

M free-stream Mach number 

N number of wing panels in chordwise direction (same N used in text, see  
pages 10 and 17); maximum value is 170 

NN number of x-stations where quantities in arrays X, RI, RO, and RB are 
input; maximum value is 170 

NRHO number of annuli internal flow area  is divided into to compute mass flow; max- 
imum value is 170 

RB array of center-body radii; for X S XBN, use .O for values of RB, m 

RI array of inner wing radii, m 

RO array of outer wing radii, m 

SCALE scale factor to expand or shrink elements of RB so as to vary mass flow; 
SCALE is ratio of desired body radius to input body radius 

UNRREF Reynolds number per meter 

X array of x-stations where arrays RI, RO, and RB a r e  input, m 

XBN x-station of center-body nose, m 
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APPENDIX A - Continued 

Between the x/c values of XFOR and XAFT, a linear least-square-curve 
f i t  is applied to outer surface velocities. Then the outer surface velocities 
are recomputed from XFOR to the trailing edge with this curve fit. Simi- 
larly, a parabolic least-square-curve fit is applied to the inner surface 
velocities between XFOR and XAFT and the Nth value of recomputed 
outer surface velocity. Then the inner surface velocities are recomputed 
from XFOR to the trailing edge with this curve fit.  

Sample Input 

The input for the viscous calculation of figure 4 is shown below. If more than one 
case is to be run, the complete data se t  must be repeated by using the proper values for 
FINI. The last card is identification information and uses format (6A10). 

e 3646. 
.Sl14. 
1.4112. 
?.?OS1 e 

3 3 194 e 

4 e 76.60 . 

2.381 1. 
3.4621. 
?. G9e?9 
3.4695. 
2.7263,. 
7.0877. 
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APPENDIX A - Continued 

Qutpu t Variables 

Most of the input quantities a r e  printed and identified with the symbols of the pre- 
ceding section. Other quantities have the meanings listed in this section. In the output 
for the wing surface solution, all perturbation velocities, including center -body velocities 
a r e  for the equivalent incompressible flow and are on the wing surface ( p o  = 1). Inthe 
mass-flow computation output the perturbation velocities and the RAD a r e  also for the 
equivalent incompressible flow. The pressure coefficients, total velocities, terms of 
equation (42), MFC and MU a r e  for the compressible flow. Other output sections are 
either labeled as to compressibility or the nature is obvious (for example, GQ, etc. are 
obviously for the incompressible flow). The coordinate system of figure 1 is used except 
in the case of the center-body slopes as noted in the following list. Output which follows 
the boundary layer output is for the wing shape modified with the final 6* distribution. 

ALPHO 

ALPHQQ 

ALPHQBB 

ALPT 

ALBTH 

CPO 

CPI 

CPBA 

CPBI 

DDEL 

DELI 

ELQ 

48 

l y o  at ti, rad 

CY 0 at coj  in first listing, rad; - 2 n k O j  + z) in second listing 

o j  left-hand side of equation (33) at 5 

ot at ti, rad 

at at toj, rad 

C on wing outer surface 

C on wing inner surface 

C 

P 

P 

on center body (only approximate because the source strength does not 
correspond to the input center-body shape owing to neglect of wing inter- 
ference on the center body) 

P 

isolated center body C this Cp would be theoretically correct if  the wing 
P; 

were absent 

* 
6 from equation (44) on wing inner surface, m 

* 
6 from equation (44) on wing outer surface, m 



APPENDIX A - Continued 

* 
Gm’ m 

dr/dx of center body at ti, with x positive downstream 

dr/dx of center body at tOj, with x positive downstream 

Y t  Ivm at ti 

Eq at ti 

shape factor, G*/0 

i 

number of times. boundary layer has been computed; IT - 1 equals iteration 
number 

j 

h on equivalent incompressible wing 

critical Mach number 

m/p,AminV, where Amin = rDrnin/4 2 

P 

radii of annuli in mass-flow computation, m 

RI - DELI (input values of RI used), m 

RO + DEL0 (input values of RO used), m 

Poj 

DELST 

DRDX 

DRDXH 

GAM 

GQ 

GQB 

H 

I 

IT 

J 

LAM 

MCR 

MFC 

MU 

RAD 

RIN 

ROUT 

RHO0 

RHOO-BODY pb at toj 
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APPENDIX A - Continued 

TEMP10 

THE 

UOURO 

UOURI 

VTO 

VTI 

VIVIN 

vI/vIN 

oj 
quantity under summation sign of equation (42) at a given value of p 

V/V, on wing outer surface at X-stations, used to compute boundary layer 

V/V, on wing inner surface at X-stations, used to compute boundary layer; 
for x/c < 0.02, UOURI is set equal to UOURO(1) to obtain more reason- 
able values 

( v / v ~ ) ~  on outer surface of wing 

( V/V,)2 on inner surface of wing first time printed; [( V, + u)/V,) at 
second time printed (square of velocity term under summation sign in Po j 

eq. (42)) 

summation of equation (42) evaluated from j = 1 to the value of J listed for 
any given value of VIVIN. The summation progresses from wing inner sur- 
face toward center line, or center body if one is present, at fixed axial loca- 
tion. This sum is evaluated at to = 0 (midchord) presently but this station 
can be changed by changing card numbers T170, T320, T650, and T870 in 
program MASFLOW. The last value of VIVIN equals VI/VIN. 

Vto/V, of equation (42) 

WXlJUOO uY/v, at toj on wing outer surface (poj = 1) 

WXIJUOI u V, at toj on wing inner surface (poj = I) 
YI 

WXlJUO summation in equation (13); for points where p f 1 (required for computing 
o j  

mass flow), this quantity is u y/Vm at toj9Poj 

WRlJUO v V, at toj,poj 

WXlQJUO ut 9Y /V, at coj  on wing outer surface (poj = 1) 

WXlQJUI ut 9Y /V, at toj on wing inner surface (po j  = 1) 

Y l  

WXlQJU same as WXlJUO only with respect to ut /V, 
9Y 
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MATRIX PRESURE BNDLYR CRITM GEOMTRY 
SLOPE SSLESO BLYR MCRIT 

MQJZT uq/V, at Soj,p0j 

WRQJUO v q l  V, at tOj on wing outer surface (poj = 1) 

WRQJUI vq/V, at C o j  on wing inner surface (poj  = 1) 

MASFLOW 

WRQJU summation in equation (35); for points where p f 1 (required for mass 
oj  

flow), this quantity is v q/Vm at Soj,poj 

. THICK 
BODY 

So j XI0 

INT 
LSQPOL 
MATINV 
POLYE1 

XOJ/C xoj/c (x of fig. 1) 

Program Structure and Listing 

This program is written in FORTRAN N, Version 2.3 for the Control Data series 
6600 computer system with the run compiler and execution routines operating under 
SCOPE 3.0. The program requires 65,0008 words of storage. 

called ANNULAR and has six primary overlay programs - GEOMTRY, MATRIX, 
PRESURE, BNDLYR, CRITM, and MASFLOW. The overlay structure and subprogram 
arrangement are shown in the following sketch: 

The program operates in the OVERLAY mode. The main overlay program is 

MTLUP 
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The function LOCF(A) used by subroutine MTLUP is a library function which 
returns the address of argument A. No listing is provided for LOCF. 

Numerous comment cards have been inserted in the main overlay to assist the user 
in understanding the flow of the computations. The purpose of each overlay and subpro- 
gram is described by comment cards at the beginning of the overlay o r  subprogram. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

10  

20 

30 
C 
C 

OVEWLAY(RINGoOc0) 
PROGRAM ANPKILAR( NPUTeOUTPUTsT PES=INPUT9TAPE6=OUTPUT~TAPElO) 

PROGRAM ANNULAR EMPLOYS ANNULAR HING THEORY TO COMPUTE THE 
SUBSONIC FLOW OWER NACELLES INCLUDING THE COMPRESSIBILITY EFFECTS 
AND VISCOUS EFFECTS 

ANY ERRORS OR PROBL€MS ENCOUNTERED I N  USING THE PROGRAM SHOULD BE 
DIRECTED TO DRe MICHAEL J a  MANN AT NASA LANGLEY. AREA CODE 804-827 
-3711, 

A CARD DECK AND DOCUMENTATION FOR THE PROGRAM ARE AVAILABLE FHOM 
COSMICI UNIVERSITY OF GEORGIA9 ATHENS, GEOQGIAr 30601. 

THIS PROGRAM IS RITTEN I N  CDC FORTRAN I V .  VERSION 2.39 TO RUN ON 
CDC 6600 SERIES COMPUTERS WITH THE SCOPE 3.0 OPERATING SYSTEM AND 
LIBRARY TAPE 

COMMON /CORD/ % ~ 1 7 0 ~ ~ R ( 1 7 0 ~ ~ C ~ R A V G ~ N N r r r l ~ D f ~ ~ N r T ~ 1 7 0 ~ r R B ~ 1 7 0 ~ r X H Y  
COMMON /ONE/ R O U T ~ ~ ~ ~ ~ ~ ~ R I N ~ ~ ~ ~ ) ~ M ~ D M A X I X I ~ ~ ~ O ~ V X I ~ ( ~ ~ O ~ ~ A L P H O ~ ~ ~ O ~  

1 ~ A L P H 0 0 ~ 1 7 0 c l ~ r X B L ~ l 7 O ) ~ A L P T ( l ~ O ) ~ A L ~ T H ~ l 7 O ~ ~ D ~ D X ~ l 7 O ~ ~ D R ~ X h ~ l 7 O ~ ~  
ELAM~ITIITMAX 

COMMON /TWO/ I P ~ C A M ~ G A ~ ~ 1 7 0 ~ r G Q ~ l 7 O ~ ~ A L ~ O O ~ l 7 O ~ l ~  
COMMON /THREE/ V O U T ( 1 7 0 ) r V I N ( 1 7 0 )  
COMMON /FOUR/ X O V C ~ 1 7 0 ) r R 0 ~ 1 7 0 ) r R I ~ l 7 O ~ ~ D E L O ~ l 7 O ~ ~ D E L I ~ l 7 ~ ) * W L S ~ 4 ~  

COMMON /F IVE/  CPO(170)pMCR 
COMMON /S IX /  N R H O ~ R A D ( ~ ~ O ) ~ V I V I N I R X X ~ R B X I  
DIMENSION IDENT(6)  
REAL LAMIKSQ,MIMFC,MCRIJOHN,MU 

l ) r D O L D 0 ( 1 7 0 ) r D O L D I ( l 7 O ~ ~ U N R R E F I S A M , # F 0 4 ~ X A F T  

INPUT 

NAMELIST /GEOM/ N I N N I M I C ~ D M I N ~ D M A X V X I R O I R I I F I N I ~ C A ~ ~ N R H O ~ ~ ~ ~ X ~ Y * S ~  

READ (59GEOM) 
READ ( S r 1 0 0 )  IDENT 
WRITE ( 6 ~ 8 0 )  
WRITE ( 6 r 1 0 0 )  IDENT 
WRITE 16990)  C ~ D M I r r l r D M A X 9 N R H O o U N R R E F , I T M A X I N I M I A I A ~ , X F ~ R ~ ~ A F T ~ ( X ( l  

I A L E ~ U N R R E F I I T M A X , A I A M ~ X F O R , X A F T  

l ~ r R O ~ I ~ r R I ~ I ~ r R B ~ I ~ ~ I ~ l ~ ~ N ~  
00 20 I = l 9 4 0  
WLS( I1=1. 
CONTINUE 
DO 30 I= l ,NN 
XOVC( 11 =x  ( I  1 /c 
ROUP (I 1 =RO( I) 
R I N ( I ) = R I ( I )  
DELO (I ) = D e  

D E L I ( I ) = O e  
DOLDI ( I )=Oe  
DOLDO(I)=Oe 
CONTINUE 

SCALE CEYTER BODY 

A 1 0  
A 20 
A 3 0  
A 4 0  

A 60 
A 70  
9 so 
A 90 
A 100 
A 110 
A 120 
A 1 3 0  
A 1 4 0  
A 150 
A 160 
A 1 7 0  
A 140 
A 190  
A 200 
A 210 
A 220 
A ?30 
A ? 4 0  
A 250 
A 260 
A ?7O 

A 790 
A 700 
A 7 1 0  
A 720 
A 330 
A 1 4 0  
A 7 5 0  
A 760 
A 770 
A 7'40 
A 7 4 0  
A 4 0 0  
A 4 1 0  
A 4 2 0  
A 4 3 0  
A 440 
A 4 5 0  
A 440  
A 4 7 0  
A 480 
A 490 
A 5 0 0  
A 510 
A C;?O 

4 530 
A 540 
4 5 5 0  
A 5 6 0  
a q.70 

A 
A $90 
A A 0 0  

a 50 

A 2ao 
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C 

40 

C 
C 
C 

50 

C 
C 
C 
C 
C 
60 

C 
C 
r 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

70  
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

DO 4 0  I = l e N N  
Re ( I) =RB ( I) *SCALE 
CONTINUE 
WRITE ( 6 r 1 2 0 )  S C A L E I ( X ( I ) , R B ( I ) ~ I = ~ ~ N N )  

COMPUTE EQUIVALENT INCOMPRESSIBLE CENTER BODY 

DO 50 I=l ,NN 
RR(I)=RB(I)*SQRT(l.-M**2) 
CONTINUE 
1p-1 
SAY=O e 

I T = 1  

COMPUTE NACELLE MEAN CAMBER AND THICKNESS AND EQUIVALENT 
INCOMPRESSIBLE SHAPE - THEN COMPUTE NACELLE CAMBER AND THICKNFSS 
SLOPES AND CENTER BODY SLOPES 

CONTINUE 
CALL OVERLAY (4HRIYGi l r0 *6HRECALL)  

COMPUTE CAMBER AND THICKNESS VORTEX STRENGTHS - G A M ( 1 )  AND GQ(1) 

CALL OVERL4Y (4HRING,2.0,6HRECALL) 

COYPUTE NACELLE AND CEVTER BODY SURFACE PRESSURES 

C A L L  OVERLAY (4HRIVG93r0*6HRECALL) 

TFST FOR I N V I S C I D  ONLY SOLN OR END OF BOUNDARY LAYER ITERATION 

I F  ( I T s G T e I T M A X )  GO TO 70 

EXTRAPOLATE FOR TRAILING EDGE VELOCITIES AND COMPUTE BOUNDARY 
LAYER. MODIFY NACELLE COORDINATES FOR DISPLACEMENT THICKNESS. 

CALL OVEPLAY (4HRIYG,4.0~6HRECALL) 
GO TO 6 0  
CONT I NUE 

CRITICAL MACH NUMBER 

CALL OVERLAY (~HRINGIS~OI~HRECALL)  

COMPUTE WI/VIN BY NACELLE INTERNAL MASS FLOW INTEGRATION 

CALL OVERLAY (4HRI  YG96r 096HRECALLI) 

CALCULATE MFC 

A 6 1 0  
A 620 
A 630 
A 6 4 0  
A 650 
A 6 6 0  
4 670 
A 680 
A 690 
A 700 
A 710  
A 720 
A 730  
A 740 
A 750  
A 760 
A 770 
A 7 8 0  
A 790 
A S O 0  
A A10 
A R20 
A A30 
A 940  
4 850 
A 860 
A 870 
A A80 
4 W90 
A 900 
A 9 1 0  
A 920 
A 9 3 0  
A 9 4 0  
A 9 5 0  
A 960 
A 9 7 0  
A 9 8 0  
A 990 
A l O O ~ o  
A l O l O  
A1020 
A1030 
A1040 
A1050 
A1060 
A1070 
A1080 
A1090 
a1100 
A1110 

MFC= ( (RXX**2-RBX 1002) / ( (DMIN/Z. )**2) ) * V I  WIN* ( 1 e + ( .2* ( M * * Z  1 * ( 1 . - V I  A 1  1 2 0  
lV1N**2 ) ) ) * *2 .5 )  A 1  130 

MIJ=MFC/ATAM A 1  140  
WRITE ( 6 r 1 1 0 )  MCR~WIVINIHFCIMU A1150 

A 1  160  
CHECK TO SEE I F  THERE IS ANOTHER CASE A1170 

A1180 
I F  (FINIeEQeOe) GO TO 10  A 1  1 9 0  
STOP A1200 
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C 
C 
80 FORMAT (1H1)  
90 FORMAT ( / / ~ ~ X I ~ ~ H I N P U T  G E O M E T R Y / / ~ X I ~ H C = ~ F ~ . ~ V ~ X ~ ~ H D M I N = , F ~ . ~ , ~ X ~ ~  

1 ~ D M A X ~ ~ F 9 ~ 3 ~ 4 X ~ S H N R H O " t l 9 / 4 X ~ 7 ~ U ~ R R E F ~ ~ E l l ~ 4 ~ 4 X 9 6 ~ I l ~ A ~ ~ ~ I 3 ~ ~ X ~ 2 H ~ ~  
~ = ~ I ~ ~ ~ X I ~ H M = ~ F ~ . ~ ~ ~ X I S H A I A M = ~ F ~ . ~ ~ Q X , S H X F O R = ~ F ~ . ~ ~ ~ X ~ S ~ ~ X A F T = ~ F ~ ~ ~ /  
3 / 9 X , 1 H X * 8 X , 2 H R 0 r 8 X r 2 H R I r 8 X I Z H R 8 / / ( 4 F l O ~ 4 ) )  

100 FORMAT (5A10)  
110 FORMAT ( 1 H O , 4 X * 4 H M C R = , F 9 . 4 r 4 X 1 7 H V I / V I N = 1 F 9 . 4 r 4 X ~ 4 H ' - l F C = ~ F 9 ~ 4 ~ 4 X ~ 3 H . '  

lU=rF9.4//4XrS6HHCR I S  CORRECT ONLY I F  t4 I S  LOVJ ENOJGH FOR INCOVIP A 

120 FORMAT (lH1/2X*29HCENTER BODY EXPANDED BY S C A L E I ~ X I ~ H S C A L E = ~ F ~ O . ~ /  
2SSUMP 1 

1///9X,lHX18X,2HRB//(2F10.4)) 
END 

A1210 
A1220 
41230 
A1?40 
A1?50 
a1p60 
A1?70 

A 1390 
A1 3 0 0  
A1310 

A1 330 
A1 3 4 0 -  

a i a o  

a1320 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 0  

20 

30 

40 

50 

C 
C 
60 
70 

FUNCTION SKK ( Z )  

FIINCTION SKK COMPUTES THE COMPLETE ELL IPT ICAL  INTEGRAL OF THE 
FIRST KIMD K ( K )  

S ,  WAGNER9 NASA AMES RESEARCH CENTER9 YOFFETT F IELD CALIF. 94035  

REFERENCE C. HASTIMGSI APPROXIMATIONS FOR DIGITAL  COMPUTERS9 Po172 

INPUT Z = K * * 2  

I F  ( 2 )  10920930 
WRITE ( 6 9 6 0 )  2 
STOP 

RETURN 
E=l.O-2 
I F  ( E )  10940950 
WQITE ( 6 9 7 0 )  Z 
STOP 

SKK=1.570796326794896 

S K K ~ ~ ~ ~ E ~ ~ 1 4 5 1 1 9 6 2 1 2 E ~ 0 1 + . 3 7 4 E 5 6 3 7 4 2 5 6 3 7 1 3 E ~ O l ~ ~ E ~ o 3 5 9 0 0 9 2 3 8 3 E ~ O ~ ~ ~ E + ~ 9 6  
1 6 6 3 4 4 2 5 9 E ~ 0 1 ~ * E * 1 ~ 3 ~ 6 2 9 4 3 6 1 1 2 ~ ( ~ ~ ~ E 9 . 4 4 ~ 1 7 8 7 0 1 2 E ~ 0 2 ~ o 3 3 ~ 8 3 ~ 5 3 4 6 ~ ~ 0 1  
2)~E*.6880248576E-Ol) ,E+.12498593597)*E+.5)~ALOG(E) 

RFTURN 

FORMAT ( l H l ~ l U X 9 2 1 H F U N C T I O N  SKK K * * 2  = ,E16091 
FORMAT l lH l , lOX97H<**2  = *E16.9*13HK(K) I N F I N I T E )  
END 

B 1 0  
B 2 0  
e 30 
e 40 
B 50 
B 6 0  
e 7 0  
B 80 
B 90 
B 100 
e 110 
B 120 
B 130 
R 140 
R 150 
R 160 
B 170 
B 180 
B 190 
B 200 
B 210 

B 2 3 0  
B 2 4 0  
B 2 5 0  
B 260 
B 2 7 0  
B 2 8 0  
R 290- 

e 220 
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C, 
C 
C 

1 0  

20 

3 0  

40 

50 

C 
C 
60 

FUNCTION €SA (Z) 

FUNCTIMN EKA COMPUTES THE COMPLETE ELL IPT ICAL  INTEGRAL OF THE 
SECOND KINO E ( K )  

So WAGNER. NASA AMES RESEARCH CENTER9 HOFFETT F I E L D  C A L I F .  94035  

REFERENCE C o  HASTINGS1 APPROXIMATIONS FOR DIGITAL  COHPUTERSI Po175  

INPUT z = ~ 4 9 2  

I F  ( 2 ) .  10120930  
WRITE ( 6 r 6 0 )  2 
STOP 

RETURN 
E=l.O-Z 
I F  (E) 10,40150 
EKAt l .0  

EKA~1o+~~~o173650645lE-Ol*E+~4757383S46E~Ol~*E+o626O6O~22OE~Ol~*E+ 
1o44325141463)*E~~~~o526~49639E~02*E+o4069697526E~01)*E+o920O180037 

EKA= l r570796326794896  

RETURN 

2E-Ol)*E+.2499836831O)*E*ALOG(E) 
RFTURN 

FORMAT ( ~ H ~ ~ ~ O X I ~ ~ H F U N C T I O N  EKA K**2 = 1E16.9) 
EN0 

c 1 0  
c 20 
C 3 0  

c 50 
C 6 0  
C 7 0  
c 80 
C 9 0  
c 100  
c 110  
c 120  
C 1 3 0  
C 140  
C 1 5 0  
C 160  
C 170  
c 180  
c 190  
c 200 
c 210 
c 220 
C 230 
C 240 
C 250 
C 260 
C 270 
c 280- 

c 4 0  
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C 
C, 

C 
6, 
C 

C 
c 
C 
10 
C 
C 
C 

C 
C 
C 
20 

30 

C 
C 
C 
40 

50 
C 
C 
C 

0 

c 
C 
C 

C 
C 
C 
70 
C 
C 
C 
80 

~ X ? Y 9 M 9 N 9 ~ A % 9 N T A ~ 9 1 9 V A R 1 9 V A R O )  

LE LOOKPUP SUBROUTINE. I T  COMPUTES Y = F ( X )  FROM 
G M=l OR 2 FOR F I R S T  OR SECOND ORDER INTERPOLATION. 

LTIPLE TABLE LOOK4.JP ON ONE INDEPENDENT VARIABLE TABLE 

L. INTERVAL POINiTER (1) TO START SEARCH 
ILL1 CHECK MONOTONICITY 

1 9  V A R D ( H A X I ~ ) ~  Y (119  V ( 3 ) e  YY(2 )  

I F  (MeEQmO) GO TO 170 
I F  (RIeLEel) GO TO 170 
€x-eFe  

eGE.0) GO TO 60 
I F  (NmLV.2) GO TO 60 

~ O N ~ ~ O N I C I T Y  CHECK 

F (WARI(E) -VARI( I ) )  20920r40 

ERROR I W  MONOTONICITY 

K-LOCF(VARI(1))  

LOCPlX)  IS A SYSTEM' ROUTINE THAT RETURNS THE ADDRESS OF X 

~ R I N T  1909 J e K 9 ( V A R I ( J ) r J = l r N )  
STOP 

MONOTONIC DECREASING 

00 30 J=29N 
I F  (VARI(J1-VARI(J-1))  3 0 r 1 0 ~ 1 0  
CONTINUE 
GO TO 60 

OMOTONIC INCREASING 

DO 50 J=2vN 
I F  ( V A R I ( J ) - V A R I ( J - l ) )  10910950 
CON? INUE 

INTERPOL AT I ON 

I F  ( IeGEeN) I=N-1 

L O C ~ T E  I INTERVAL ( ~ ( 1 )  .LEmX.LT.X(I* i)) 

I ( I ) - X ) * ( V A R I ( I * l ) - X ) )  1 0 0 ~ 1 0 0 9 7 0  

IN GIVES DIRECTION FOR SEARCH OF INTERVALS 

I N = S I G N ~ 1 ~ O ~ ( V A R I ( I + 1 ) - V A R I ( I ) ) o ( X - V A R I ( I ) ) )  

I F  X OUTSIDE ENDPOINTS* EXTRAPOLATE FROM END 'INTERVAL 

I F  ( ( I + I N ) e L E o O )  GO TO 90  

D 1  
D 2  
D 30 
0 40 
D 50 
D 60 
0 70 
0 80 
D 90 
D 100 
D 110 
D 120 
D 130 
D 140 
D 150 
D 160 
D 170 
D 180 
D 190 
D 200 
D 210 
D 220 
D 230 
D 240 
D 250 
D 260 
D 270 
D 280 
D 230 
D 300 
D 310 
D 320 
D 330 
D 340 
D 350 
D 360 
D 370 
D 380 
D 390 
D 400 
D 410 
D 420 
D 430 
D 440 
D 450 
D 460 
D 470 
D 480 
0 &90 
D 500 
D 510 
D 520 
D 530 
D 540  
D 550 
D 560 
D 570 
D 580 
D 590 
D 600 
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C 
C 
C 
90 
1 0 0  
C 
C 
C 

1 1 0  

C 
C 
C 
120  

C 
C 
C 

130  

140 
1 5 0  

1 6 0  

C 
C 
C 
1 7 0  
180 

C 
C 
1 9 0  

I F  t ( I + I N ) e G E e N )  GO TO 90 D 610  
I = I [ + I N  D 620  
I F  ((VARI(I)-X)*(VARI(I+l)-X)) 100,100980 D 6 3 0  

D 640 
EXTRAPOLATION D 650 

D 660 
EX=.Te D 670 
I F  (MeEQe2) GO TO 120  D h80 

D 690 
F IRST ORDER D 4 0 0  

D 710 
DO 110 NTZlrNTAB D 420 
V ( N T ) = ( V A R D ~ I P N T ) * ( V A R I ( I + ~ ) - X ) - ~ A R D ( I + ~ ~ N T ) * ( V A R I ( I ) - ~ ) ) ~ ( V A R I ( I ~  D 730 

1 1 ) - V A R I  ( I . )  1 
I F  (EX) I = I + I N  
RETURN 

SECOND ORDER 

I F  (N.EQ.2) GO TO 10  
I F  ( I e E Q e  (N-1)  1 GO TO 140 
I F  (1eEQ. l )  GO T O  1 3 0  

P ICK THIRD POINT 

ZERO ORDER 

00 180  NTZ l rNTAB 
Y (NT) =VARD ( 1 t NT) 
RETURN 

D 740 
D 750 
D 760 
D 770 
D 7 8 0  
D 790 
D A00 
D 910  
D 520 
D R30  
0 A40 
0 A50 
D 860 
D 870 
D 880 
D 8 9 0  
D 900 
D 910  
D 920 
D 9 3 0  
D 940 
D 9 5 0  
D 960 
D 970 
D 980 
D 990 
DlOOQ 
D'lOlO 
d1020 
D1030 
01040  
01050  
D1060 
01070  

FORMAT ( l H 1 9 4 9 H  TABLE BELOW OUT OF ORDER FOR MTLUP A T  POSITION r I  01080 
lL59/31H X TABLE IS STORED I N  LOCATION , O 6 9 / / ( 8 6 1 5 e 8 ) )  01090  
END 01 ]I 00- 
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10 

20 

C 
C 
C 

30 

40 

C 
C 
50 

OVERLAY(HING,lrO) 
PROGRAM GEOMTRY 

THIS OVERLAY COMPUTES NACELLE MEAN CAMBER R A D I I  AND THICKNESS 

COMPUTED ON THE EQUIVALENT NACELLE CAMBER AND THICKNESS SHAPES 
AND ON THE EQUIVALENT CENTER BODY. 

FOR THE EQUIVALENT INCOMPRESSIRLE SHAPE. THEN THE SLOPES ARE 

C9MMON /CORD/ X ~ 1 7 0 ~ r R ~ 1 7 0 ~ ~ C ~ R A V G I N N I N , D Y I N I T ( 1 7 0 l r R B ~ l 7 O ) ~ X ~ N  
COMMON /ONE/ R O U T ~ 1 7 0 ~ r R I N ~ 1 7 0 ) ~ Y 1 0 M A X , X I ~ l 7 O ~ ~ X I ~ ~ l 7 O ~ ~ A L P H O ~ l 7 O ~  

1 * A L P H 0 0 ~ 1 7 0 r l ~ r X B L 1 l 7 ~ ~ ~ A L P T ~ l 7 O ~ ~ A L P T H ~ l 7 ~ ~ ~ D R D X ~ l 7 O ~ ~ D R ~ X H ~ l 7 O ~ ~  
2 L A M  v I T  9 I T M A X  

RFAL L A M 9 M  

COMPUTE NACELLE MEAN CAMBER R A D I I  AND THICKNESS AND 
COMPUTE NACELLE EQUIVALENT INCOMPRESSIBLE BODY 

DO 10 I = l r N N  
R (I 1 =(ROUT (I 1 + R I N (  I )  /2. 
T ( 1  )=POUT (I 1 -RIN ( I )  
CONTINUE 
DO 20 I = l r N N  
R ( I ) = R ( I ) ~ S Q R T ( l . - Y * * 2 )  
T ( I ) = T ( I ) O S ~ R T ( l 0 - Y * * 2 )  
CONT INUE 
DHAX=DMAX*SQRT(l.-YQ*2) 
DYIN=DMIN*SQRT(l.-Y**2) 
RAVG=(DMIN+DM4X)/4. 

COMPUTE MACELLE CAVBER AND THICKNESS SLOPES AND CENTER BODY SLOPES 

CALL SLOPE (XI*XIO,ALPHO,ALPHOO) 
DO 30 J = l r N  
X R L ( J ) = ( C / 2 . ) - ( X I O ( J ) O ~ A V G )  
CONTINUE 
CALL THICK (ALPTqALPTH) 
CALL BODY (DRDXqDRDXH) 
LAM=(DMAX+DMIN)/(2.*C) 
I F  (IT.LE.ITMAX1 GO TO 40 
WQITE (6,501 L A M ~ ~ A L P H O ~ I ~ ~ A L P H O O ~ I ~ l ~ ~ X I ~ I ) ~ X I O ~ I ~ ~ A L P T ~ I ) * A L P T H ~  

l I ) ~ D R D X ( I ) ~ D R D X H ( I ) ( I , I = l r N )  
CONTINUE 
RFTuRN 

FORMAT ( lHlr25X*42HGEOYETRY ON EQUIVALENT INCOMPRESSIBLE BODY//7X* 
1 4 H L A M = * F 9 o 4 / / 5 X ~ 5 H A L P H O , 4 X ~ 6 H A L P H O O I B X I 2 H X I ~ 7 X ~ 3 H X I O ~ 6 X ~ 4 H A L P T ~ 5 X ~  
~ ~ H A L P T H * ~ X I ~ H D R D X ~ S X I S H D R ~ X H ~ ~ ~ ~ ~ ~ I  OR J / / 1 8 F 1 0 . 5 r I 1 0 ) )  

END 

E 1 0  
E 20 
E 30 
E 4 0  
E 50 
E 51 
E 52 
E 60 
E 70 
E 80 
E '  90 
E 1 0 0  
E 1 1 0  
E 111 
E 112 
E 113 
E 114 
E 1 2 0  
E 130 
E 1 4 0  
E 1 5 0  
E 160 
E 1 7 0  
E 1 8 0  
E 1 9 0  
E 200 
E 2 1 0  
E 220 
E 2 3 0  
E 2 4 0  
E 250 
E 360 
E 270 
E 280 
E 290 
E 300 
E 3 1 0  
E 3 2 0  
E 330 
E 340 
E 350 
E 360 
E 3 7 0  
E 780 
E 390 
E 400 
E 4 1 0  
E 420 
E 430-  
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10 

20 

30 

40 
50 

60 

70 

SUBROUTINE SLOPE (XI~XIOrALPH0,ALPHOOl 

THIS SUBROUTINE COYPUTES X I ( I ) r  X I O ( J ) r  ALPHO(I1r  ALPHOO(J’) 

THE X I  AND X I 0  ARE FOR NACELLE AND CENTER RODY 
THE SLOPES ARE NACELLE CAWER SLOPES. 

COMMON /CORD/ ~ ( 1 7 0 )  , ~ ( i 7 0 1  ~ C ~ R A V G ~ N N ~ N ~ D M I N  
DIHENSION A L P H 0 ( 1 7 0 ) *  A L P ~ 0 1 1 7 0 r l ) r  X I ( 1 7 0 I r  X I O ( 1 7 0 )  
I P = - 1  
XXX=-.25*(C/N) 
XX= (C/N) * e  7 5  

I F  ( I o E Q o l )  GO TO 1 0  
DO 30 I = l r N  

C A L L  MTLUP ( X X X , R X I ~ ~ ~ . N N I ~ ~ O ~ ~ ~ I P I X I R )  
C A L L  MTLUP ( X X 1 f f X 1 1 2 r N N 1 1 7 0 r l r I P r X r R )  
T E M P 4 = ( R X I l - R X I I / ( C / N )  
GO TO 20 
PIP=O. 
POP=(C/N)*.S 
C A L L  MTLUP ( P I P ~ R X I l ~ 2 ~ N N ~ * l 7 0 ~ l , I P , X I R )  
C A L L  MTLUP ( P O P I R X I ~ ~ * N N ~ ~ ~ ~ ~ ~ ~ I D I X , R )  
T E M P 4 = ( R X I l - R X I ) / ( ( C / N ) 9 . S )  
CONTINUE 
ALPHO ( I) =ATAN (TEMP43 
XXX=XXX+(C/N) 
XX=XX*(C/N) 
CONTINUE 
DO 50 I - l r N  
I F  (1oEQ.N) GO TO 40 
A L P H 0 0 ~ I ~ l ~ ~ ~ A L P H O ~ I ) * A L P H O ~ I * 1 ~ ~ 0 . 5  
GO T O  50 
A ~ P H 0 0 ~ 1 ~ 1 ~ ~ A L P H O ~ I ~ + ~ . 5 * ~ A L P H O ~ I ~ ~ A L P H O ~ I - l ~ ~ ~  
CONTINUE 
TEMPS=*S*C/RAVG 
TEMP6=(C/N)/RAVG 
DO 7 0  I = l r N  

X I ( I ) = X I ( I - l ) - T E M P 6  
X I O ( l ) = X I O ( I - l ) - T E 4 P 6  
GO TO 70 
~ I ( I ) = T E Y P 5 - ( . 2 5 * T E M P 6 )  

CONTINUE 
RETURN 
END 

I F  (1oEQ.l) GO TO 6 0  

X I O ( I ) = T E M P 5 - ( . 7 5 * T E H P 6 )  

F 10  
F 20  
F 30 
F 40 
F 50 
F 6 0  
F 7 0  
F 80 
F 90 
F 100 
F 110 
F 120 
F 130 
F 140 
F 150 
F 160 
F 170 
F 180 
F 190 
F 200 
F 210 
F 220 
F 230 
F 240 
F 250 
F 260 
F 270 
F 280 
F 290 
F 300 
F 310 
F 320 
F 330 
F 340 
F 350 
F 360 
F 370 
F 380 
F 390 
F 400 
F 410 
F 420 
F 430 
F 440 
F 450 
F 460- 
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e 
C 
C 

10  

20 

30 

40 
50 

SUBROU~IN€ ?HICK (ALPTrALPTH) 

THIS SUBROUTINE COMPUTES NACELLE THICKNESS SLOPES. 

COHHON /CORD/ X ( 1 7 0 )  r R f 1 7 0 )  ~ C I R A V G ~ N N I N ~ D M I N I T ~ ~ ~ O ~  
DIMENSION A L P T ( l 7 O ) r  A L P T H ( l 7 0 )  
IP=- l  
XXXP-.25*(C/N) 
XX=(C/N)*.75 
DO 30 I t l r N  
I F  (IeEQ.1) GO TO 10  
C A L L  HTLUP ( X X X r T X I l r E r N N ~ l 7 O ~ l ~ I P ~ X ~ T )  
C A L L  HTLUP (XXrTXIr2rNNr170rlrIPrXrT) 
TEHP4=((fXIl-TXI)/2e)/(C/N) 
GO TO 20 
X 14= (C/N) * -5 
CALL HTLUP ( X 1 4 r T X I 1 2 r N N r 1 7 0 r l r I P I X I T )  
TEMP4=((O.-TXI)/Eo)/((C/N)*o5) 
CONTINUE 
ALPT(I)=ATAN(TEMP4) 
XXX=XXX+(C/N) 
XX=XX+(C/N) 
CON? INUE 
DO 50 I = l r N  
IF (1.EQ.N) GO TO 40 
ALPTH(I)=(ALPTfI)+ALPT(I+l))*.5 
GO T O  50 
ALPTH(l)=ALPT(I)+(.S~(ALP,T(I)-A~PT(I-l))) 
CONTLNUE 
RETURN 
END 

G 10  
G 20 
G 30 
G 40 
G 50 
G 6 0  
G 70 
G 8 0  
G 9 0  
G 100 
G 110  
G 120 
G 130 
G 140 
G 150 
G 160  
G 170  
G 180  
G 190  
G 200 
G 210 
G 220 
G 230 
G 240 
G 250 
G 260 
G 370 
G 200 
G 290 
G 300 
G 3 1 0 - .  
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C 
C 
C 

10  

20 

30 

40 
50 

60 
70 
eo 

SUBROUTINE BODY (DRDXIDRDXH) 

THIS  SUBQOUTINE COYPUTES CENTER BODY SLOPES. 

COMMON /CORD/ X ~ 1 7 0 ~ ~ R ( 1 7 0 ~ r C r R A V G ~ N N ~ ~ ~ D M I N ~ T ~ l 7 O ~ ~ R B ~ ~ 7 ~ ~ * X B N  
DIMENSION DRDX(170) r  DRDXH(170) 
Ip-1 
XXX=-.25* (GIN) 
x x =  (C/N 1 * .75 
DO 30 I = l t N  
I F  (I.EQ.1) GO TO 1 0  
C4LL MTLOP ( X X X I R B X I ~ ~ ~ , N N I ~ ~ O ~ ~ * I P ~ X ~ R B )  
I F  (XXXoLEeXBN) RBXIl=O. 
CALL  HTLUP ( X X r R B X I r 2 r N N r 1 7 0 r l r I P , X I R B )  
I F  (XX.LE.XBN) RBXI=O. 
DRDX(J)=(RBXI-RBXIl)/(C/N) 
GO TO 20 
X14=(C/N)*.5 
C A L L  MTLUP ( X ~ ~ ~ R B X I I ~ ~ N N * ~ ~ O + ~ , I P , X , R B )  
I F  (X14.LE.XBN) RBXI=O. 
DRDX( I )=REXI / ( (C /N) * .S )  
XXX=XXX+(C/N) 
XX=XX+(C/N) 
CONT I NUE 
DO 50 I = l r N  

DRDXH(I)=(DRDX(I)+DRDX(I+l))/2. 
GO TO 50 
DRDXH(I)=DRDX(I)+(.S~(DRDX(I)-DRDX(I-l))) 
CONTINUE 

DO 60 1 = 2 r N  

CONTINUE 
DRDXH(I)=O. 
CONTINUE 
RETURN 
END 

I F  (1.EQ.N) GO TO 40 

I F  (DRDXH(l).NE.O.) GO TO 80 

I F  (DRDXH(I).NE.O.) GO TO 70 

H 10 
H 20 
H 30 
H 40 
H 50 
H 60 
H 70  
H 80 
H 90 
H 100 
H 110  
H 120  
H 130  
H 1 4 0  
H 150  
H 160 
H 170  
H 180 
H 190 
H 200 
H ?10  
H 220  
H 230 
H 240 
H 250 
H 260 
H 270 
H 280  
H 290 
H 300 
H 310  
H 320 
H 330 
H 340 
H 350 
H 340 
H 370 
H 380- 
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C 
C 
C 

10 

20 
C 
C 
C 

30 

40 

50 

60 
70  
C 
C 
C 

OVERLAY(RINGv2rO) I 1 0  
PROGRAM M A T R I X  I 2 0  

I 3 0  
THIS OVERLAY COMPUTES NACELLE CAYBER AND THICKNESS VORTEX I 4 0  
STRENGTHS - G A M C I )  AND G Q ( 1 )  I 41 

I 5 0  
COMMON /CORD/ X~170)rR(170)rCrRAVGINNINIDMINIT(170)rRB~l7O~~X~N I 60 
COMMON /ONE/ R O U T ~ 1 7 0 ~ ~ R I N ~ l 7 0 ~ r M 1 D M A X , X I ( l 7 O ~ ~ X I O ~ l 7 O ~ ~ A L P H O ~ l 7 O ~  I 7 0  
1 ~ ~ L P H 0 0 ~ 1 7 0 r l ~ r X B L ~ l 7 O ~ ~ A L P T ~ l 7 O ~ ~ A L P T H ~ l 7 O ~ ~ D R D X ~ l 7 O ~ * D R ~ X H ~ l 7 O ~ ~  I 80 
ELAM9 I T  9 I T M A X  I 9 0  

COMMON /TWO/ I P ~ C A M ~ G A M ( 1 7 0 ) r G Q ( l 7 O ~ ~ A L P O 0 ~ 1 7 0 ~ 1 )  I 100  
REAL KSQ+LAM,M I 110 
DIMENSION v l A ( 1 7 0 ) r  WY(170) r  GQR(170)r  ANS(170)v  ALPHQBB(17091)9 RH I 1 2 0  

l O O ( 1 7 0 )  I 130 
I 131 

COMPUTE SECOND ALPHOO WHICH I S  PRINTED - DO 20  I 132 
I 133 

DO 20 J = l r N  I 140  
WRBQJUSO. I 1 5 0  
RHOO (J) =1. I 160 
XX=(C/N)*o25 I 170  
DO 10  I = l r N  I 1 8 0  
CALL  MTLUP ( X X I R B X I , Z , N N ~ ~ ~ O ~ ~ , I P I X , R B )  I 190 
I F  (XXeLEoXBN) RBXI=Oo I 200 
D E L X I = X I ( I ) - X I O ( J )  I 210 
T E M P ~ ~ ~ R H O O ~ J ~ / ~ ~ O * ~ ~ D ~ L X I * * ~ + R H O O ~ J ~ * * ~ ~ * * ~ ~ ~ ~ ~  I 220  
W R B Q J U = W R B Q J U + T E M P l l ~ ~ R B X I / R A V G ~ * D R D X ( I ) * ~ X I ~ l ~ - X I ~ 2 ~ ~  I 230 
XX=XX*(C/N) I 240  
CON1 INUE I 250 
A L P O O ( J i l ) = A L P H O O ( J ~ l )  I ?60 
A L P H O O ~ J ~ 1 ~ ~ ~ 2 ~ * 3 ~ 1 4 1 5 9 ~ ~ A L P H O O ~ J l l ) + W R B Q J U ~  I 270  
CONTINUE I 280  

I 290 
SOLVE M A T R I X  EQUATION FOR THE G A Y ( 1 )  MATRIX I 300 

I 310 
I F  (CAM.EQ.0.) GO TO 5 0  I 320  
REWIND 1 0  I 3 3 0  
DO 40 J = l r N  I 3 4 0  
DO 30 I t l r N  I 3 5 0  
D E L X I = X I ( I ) - X I O ( J )  I 360 
KSQ"4e/(DELXI**2+4e)  I 3 7 0  

SK=SKK (KSQ) I 3'30 

l0(2o*SKK(KSQ)))*ALPHO(I) I 4 1 0  
WRITE ( 1 0 )  (WA(IT)~IT=l,N)rALPHOO(J,l) I 4 2 0  
CONTINUE I 4 3 0  
CALL  SSLESO (NVlrGAH) I 440 
REWIND 10  I 4 5 0  

DO 60 I = l 9 N  I 4 7 0  

CONTINUE I 4 9 0  
CONTINUE I 500 

I 5 1 0  
COMPUTE ALPHQBB - DO an I 5 2 0  

I 5 3 0  
DO BO J = l r N  I 5 4 0  

XX=C/N*,ZS I 560 

EK=EKA (KSQ) I 380 

~ A ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ * D E L X I * S Q R T ~ K S ~ ) ) / ~ . ) ~ ~ ~ ~ ~ ~ ~ ~ K S Q ~ / ~ ~ O ~ K S Q ~ ~ ~ E K A ~ K S Q ~ ~  I 4 0 0  

GO Tb 70 I &o- 

GAM (I 1 =a. I 480 

ALPHQBB(Jel)=O. I 550 
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80 
C, 
C 
C 

90 

100 

C 
C 
C 

110 

120 
i 30 
C 
C 
140 

150 

DO 8 0  I=lrN 
DELXI=XI(I)-XIO(J) 

EK=EKA(KSQb 
SK=SKK (KSQ) 

KSQ=4./(DELXI**2+4*) 

CALL HTLUP ( X X r T X r 2 r N N 1 1 7 0 ~ 1 r 1 P * X r T )  
A L P H Q B B ( J r l ~ ~ A L P H Q B B ( J ~ l ~ + ( ( T X / C ) * ( ( ~ S Q R T ~ l . ~ K S Q ~ ~ / 2 ~ ~ * ~ ~ D E L X I / A B S  
11DELXI))*(((KSQ+2.)*SK)-(2o*(KSQ+l.~*EK))~*(XI(l~-X~(2))~ 
XX=XX+(C/N) 
CONTINUE 

SOLVE MATRIX EQUATION FOR GQB(1) MATRIX 

REWIND 10 

DO 90 I=l,N 
Do 100 J=lrN 

DELXI=XI(I)-XIO(J) 

EK=EKA (KSQ) 
SK=SKK (KSQ) 

KSQ=4o/(DELXI**2+4o) 

W Y ( I ) = ~ ( ( K S Q - ~ . ) * E K ~ ~ ~ * ( ~ O - K S Q ) * S K ~ / S Q R T ( K S Q ) ~ * ( ( X I ( ~ ~ - X I ( ~ ~ ~ / D E L X  
1 I) * (1 */LAM) 
WRITE (10) ( W Y ( I T ) r I T = l r N ) r A L P H Q B B ( J , 1 )  
CONTINUE 
CALL SSLESO (Nr 1 rGQB) 

COMPUTE GQ 

XX=C/N*.25 
DO 110 I=lrN 
CALL MTLUP (XXrTXr2rNN1170rlrIPrXrT) 

GQ ( I )=-GQ( I)  
XX=XX+(C/N) 
CONT INUE 
IF (1T.LE.ITMAX) GO. TO 130 
PRINT 140 
DO 120 I=lrN 

CONTINUE 

RETURN 

G Q ( I ) = ( ( T X / C ) / L A H ) + ( ( ( C / ( 2 . 9 R A V G ) ) * ~ 2 ) * G Q B ( I ) )  

WRITE ( 6 r 1 5 0 )  I~GAM(I)rGQ(I~rGQBfI~~ALPHQB~(I,1),ALPHOO~I~~~ 

CONT I NUE 

FORMAT ~ 1 H l ~ l l X ~ l H I ~ 9 X ~ 3 H G A M ~ l ~ X r 2 H G Q ~ l O X ~ 3 H G Q B r 6 X ~ 7 H A L P H Q ~ B ~ 7 X ~ 6 H  

FORMAT ( 9 X * I 3 r 2 X 1 E 1 2 . 5 r 4 ( 2 X , E l l . 4 ) )  
1 ALPHOO 1 

I 570 
I 580 
I 590 
I 600 
I 610 
I 620 
I 630 
I 640 
I 650 
I 660 
I 670 
I 680 
I 690 
I 700 
I 710 
I 720 
I 730 
I 740 
I 750 
I 760 
I 770 
I 780 
I 790 
I 400 
I 910 
I 920 
I 430 
I 840 

I 860 
I 870 
I 880 
I 890 
I 900 
I 910 
I 920 
I 930 
I 940 
I 950 
I 960 
1 970 
I 980 
I 990 
11000 
11010 
11020 
11030 

I ~ 5 0  

END I 1  040- 
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C 
C 
C 
C 
C 
C 
C 
C 
C, 
C 
C 

C 
C 
C 

10  

C 
C 
C, 
20 

30 

40 

5 0  
60 

70 

80 

90 

SUBROUTINE SSLESO (NTrNCFLGrANS) 

THIS  SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS BY 
SUCCESSIVE ORTHOGON#LIZATION **. 
I F  MATRIX OROER I S  = N, AND NUMBER OF RIGHT-HAND SIDES = M r  THEN 
THE AMOUNT OF CORE THAT MUST BE AVAILABLE FOR EACH ARRAY I S  -- 
R = N+Mr RV = N.*M*lr C V  = N - l r  V = J ( J + l )  WHERE J I S  THE INTEGER 
PORTION OF (N+M)/2 

DIMENSIONS BASED ON1 THE VALUES N*M .LE. 283 ,  MAX N IS 281 

DIMENSION R V ( 1 7 0 ) r  R ( 1 7 0 ) r  C V ( l 7 O ) r  V ( 8 1 0 0 ) r  ANS(NT) 
REWIND 1 0  
NI=NT+NCFLG 
J.=N 1 - 1 

READ ( 1 0 )  

READ ( 1 0 )  

READ ( 1 0 )  ( R ( I ) r I = l r N l )  
1 2 x 0  
DO 40 I = l r J  
RV (I 1 = 0 .  
DO 30 I I z l r I N  
I2=12+1 
RV (I )=RV (I 1 *R (11 1 * V (  12) 
N 2 = I * I N  
RV (I 1 =RV (1) +R (N2)  
I 2 = I N + 1  
NN=J*IN* 1 
KK=J* I 2  
JtJ- 1 
DO 60 I = l r J  
DO 50 I I = l r I N  
NN=NN- 1 
KK-KK- 1 
V(KK)=V(NN) 
KK=KK-1 
DO 70 I m l r I N  
R (  I ) = V (  I) 
K=O 
DO 90 I = l r J  
C = - R V ( I * l ) / R V ( l )  
DO 80 I I - l r I N  
C v  (I I) =C*R ( I I) 
NN=K* I I 
12=12+1 
V (NN) =CV ( I 1) * V  ( 12) 
K=NN+ 1 
I2=12*1 
V ( K ) = C  
I F  (JoEQmNCFLG) GO TO 100 
I N = I N + l  

J 10 
J 20 
J 30 
J 40 
J 50 
J 60 
J 7 0  
J 80 
J 90 
J 100 
J 1 1 0  
J 120 
J 1 3 0  
J 140 
J 1 5 0  
J 160 
J 1 7 0  
J 1 8 0  
J 1 9 0  
J 2 0 0  
J 210  
J 2 2 0  
J 230  
J 240 
J 250 
J 260 
J 270  
J 2 8 0  
J 290 
J 300 
J 3 1 0  
J 3 2 0  
J 330 
J 340 
J 350 
J 360 
J 370 
J 380 
J 390 
J 400 
J 4 1 0  
J 420 
J 430 
J 440 
J 450 
J 460 
J 470  
J 480 
J 490 
J 5 0 0  
J 5 1 0  
J 5 2 0  
J 530 
J 540 
J 5 5 0  
J 560 
J 5 7 0  
J 580 
J 5 9 0  
J 400 
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GO TO 20  

KK=O 
DO 110 J=ltNCFLG 
K=K*NT 
KK=KK *NT 

110 CONTINUE 
DO 120 J = l r N T  

120 ANS(J)=-V(J)  
RETURN 

100 K=l-NT 

END 

J 610 
J 620  
J 630 
J 640  
J 650 
J 660 
J 670 

J 690 
J 700 
J 710- 

J ha0  
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OVERLAY(RIYGI~,O) K 10  
PROGRAM PRESURE K 20  

C K 30 
C T H I S  OVERLAY COMPUTES NACELLE AN0 CENTER BODY SURFACE PRESSURES K 4 0  
C K 50 

COMMON /CORD/ X ~ 1 7 0 ~ ~ R ( ~ 7 0 ~ r C ~ R A V G I N N , N I D M I N I T O r R B ~ l 7 O ~ ~ X f i N  K 6 0  
COMMON /ONE/ R O U T ~ 1 7 0 ~ ~ R I N ~ 1 7 0 ) ~ ~ , D H A X , X I ~ l 7 O ~ ~ X I O ~ l 7 O ~ ~ A L P H O ~ l 7 O ~  K 7 0  

l ~ A L P H 0 0 ~ 1 7 0 ~ l ) r X B L ( l 7 O ) ~ A L P T ~ l 7 O ~ ~ A L P T H ~ l 7 O ~ ~ D R D X ~ l 7 O ~ ~ D R ~ X H ~ l 7 O ~ ~  K 80 
2LAMrIT* ITMAX K 9 0  

COMMON /TWO/ IPrCAYrGAM(170)rGQ(17O~rALPOO~l7O~l) K 1 0 0  
COMMON /THREE/ V O U T ( l 7 0 ) r V I N ( 1 7 0 )  K 1 1 0  
COMMON /F IVE/  CPO(170)rHCR K 120 

K 130  DIMENSION RHOO(170)r  C P I ( 1 7 0 )  
REAL KSQrLAMrH K 140  
I F  ( IToLEo ITMAX)  GO TO 10  K 150 
PRINT 190  K 160  
PRINT 130  K 170  
PRINT 140  K 180  
PRINT 170  K 190 

10  CONTINUE K 2 0 0  
XXX=(C/N)*o75 K 210  
DO 120 J = l r N  K 220 
XOJ=XIO(J)*RAVG/C K 230  
RHOO(J)= lo K 240  
XX=(C/N)*.25 K 2 s o  

C K 260  
C COMPUTE VELOCITIES ON NACELLE SURFACE - DO 20  K 270  
C K 280 

WX 1 JUOZO. K 2 9 0  
WR 1 JUO=O . K 300 
WX 1Q JU=O . K 3 1 0  
WRlQJU=O. K 320 
WXQJU=O K 330 
WRQJU=O K 340  
WXBQJU=O. K 350 
WRBQJU=O. K 3 6 0  
DO 20 I t l r N  K 370  
D E L X I = X I ( I ) - X I O ( J )  K 380 
KSQ=4o/(OELX1**2+4.) Y 3 9 0  
EK-EKA (KSQ) K 4 0 0  
SK-SKK (KSQ) K 4 1 0  
CALL  MTLUP ( X X r R B X I r 2 r N N r 1 7 0 r l r I p , X I R B )  K 4 2 0  
I F  (XXoLEoXBN) RBXI-00 K 4 3 0  

1(2.*SKK(KSQ))-((KSQ/(lo-KSQ))*EKA(KSQ))) K 4 5 0  

1-(2o*SKK(KSQ))  1 K 4 7 0  
TEHP7=(4.*EK)/((SQRT(4.+DELXI**2))*DELXI) K 4 8 0  
TENP@=Z,*TEMDl K 4 9 0  
TEMP~~=RHOO(J)/(ZO*((DELXI**~+RHOO(J)**~)**~O~)) K 5 0 0  
T E M P ~ ~ ~ ~ D E L X I ~ / ( ~ ~ * ~ ( D E ~ X I * ~ Z + R H O O ( J ) ~ ~ ~ ~ * * I O ~ ~ ~  K 5 1 0  
~ X l J U O ~ W X 1 J U O + T E M P 1 * A L P H O ~ I ~ * G A M ~ I ~ * ~ l o / ~ 2 o * 3 ~ 1 4 1 5 9 ~ ~  K 520 
~ R ~ J U O ~ W R ~ J U O + T E M P ~ * A L P H O ~ I ~ * G A M ~ I ~ * ~ ~ O ~ ~ ~ O * ~ ~ ~ ~ ~ S ~ ~ ~  K 530 
W X 1 Q J U ~ ~ X l Q J U + ~ T E M P I ~ G Q ~ I ~ * ~ X I ~ l ~ ~ X I ~ 2 ~ ~ / ~ ~ ~ * 3 o l 4 l S 9 ~ ~  K 540 
~ R l Q J U ~ W R 1 Q J U + ~ T E M P 2 * G Q ~ I ~ * ~ X I ~ l ~ ~ X I ~ 2 ~ ~ ~ ~ ~ o * 3 o l 4 1 5 9 ~ ~  K 550 
~ X Q J U ~ W X Q J U - ( T E M P 7 * ~ L P T ( I ~ * ( X I ( l ~ ~ X I ~ 2 ) ) / ~ ~ o * 3 ~ 1 4 l S 9 ~ ~  K 560 
~ R Q J U ~ W R P J U + ~ T E M P 8 * ~ L P f ( I ~ * ~ X I ~ l ~ ~ X I ~ 2 ~ ~ / ~ 2 o * 3 e l 4 1 5 9 ~ ~  K 5 7 0  
~ X B Q J U ~ W X B Q J U + T E M ~ 1 2 ~ ~ ~ B X I / R A V G ~ ~ D R D X ~ I ~ * ~ X I ~ l ~ ~ X I ~ 2 ~ ~  K 580 
W R B Q J U = W R B Q J U + T E M P l l o ( R B X I / R A V G ~ * D R D X ~ I ) * ( X I ( l ~ - X I ~ 2 ~ ~  K 5 9 0  
XX=XX+ (C/NI K 600 

T E M P ~ = ( ~ ~ / ( ~ ~ * S Q R T ( D E L X I * * ~ + ~ ~ ) ) ) * ( ( ( ( ~ O - K S Q ) / ( ~ ~ - K S Q ) ) * E K A ( K ~ Q ) ) -  K 440 

T E M P 2 = ( ( ( - 1 . ) * D E L X I * S Q S T ( K S Q ) ) / 4 . ) * ( ( ( Z o - K S Q ) / ( l o - K S Q ) ) * E K A ( K S Q ) )  K 4 6 0  

68 



APPENDIX A - Continued 

2 

30 

60 

C 
C 
C 

C 
c 
C 

C 
C 
C 

50 

60 
C 
C 
C 

CONf INUE 
I F  iJeEQaFI3 GO TO 30 
T ~ 3 ~ ~ ~ ~ H O ( J ~ ~ G A Y ' ( J ~ + A L P H O ~ J + l ~ * G A H ~ J + 1 ) ~ * ~ 2 5 ~ ~ l o / ~ X I ( l ~ ~ X I ~ 2 ~ ~ ~  
TEMP31=r25*(GQ(J)+GQ(J+1)) 
Go TO QQ 
T E ~ P 3 = ~ ~ P W O ~ J ) + G A M ( ~ ~ * ~ S O * ~ l ~ / ~ X I ~ l ~ ~ X I ~ ~ ~ ~ ~ * ~ 3 3 3 3 3 3 3 3 ~ 3  
TEXP31=-50*(GQ(J)*.3333333333) 
CONTINUE 
WXlJUOO=YXlJUO+TEMPO 
WXlJWI=HXlJUO-TEMPO 
YXlQJUI=WXlQJU-TEHPOl 
YXlOJUU=~XlOJU+fEMPOl 
YRQJUI=WRQJU+ALPTH(J) 
YRQJUO=WBPJU-ALPTH(J) 

CALCULATE TOTAL VELOCITY SQUARED AN0 APPLY COMPRESSIBILITY FACTOR 

K 610 

K 630 
K 640 
K 650 
K 660 
K 670 
K 680 
K 690 
K 7 0 0  
K 710 
K 720 
K 730 
K 740 
K 750 
K 760 
K 7 7 0  
K 780 
K 790 
K 800 
K 810 
K 820 
K 830 
K 840 
K A50 
K 8 6 0  
K 870 
K 880 
K 890 
K 9 0 0  
K 910 
K 9 2 0  
K 930 
K 940 
K 9 5 0  
K 9 6 0  
K 9 7 0  
K 980 
K 9 9 0  
Kl_p00 
K l O l O  
K1020  
K1030  
K 1 0 4 0  
k1050 
K1060  
K1070  
K1080  
K 1090 
K l l O O  
K l l l O  
k1120 
K1130  
K1140  
K1150  
K1160  
K1170  
k1180 
K1190  
KlZOO 

K 620 
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70 
80 

C 
C 
C 

90 

100  

110 

120  

C 
C 
130 

140  

150  
160 
170  

180 
190 

I F  ( M o E Q o O e )  GO TO 90 
CPBA=(2./(1o4"(M**2)))*((l~+(o2*(M**2)*(l~-VBA~~~**(l~4/o4)-lo) 
C P B I ~ ~ 2 o / ~ ~ o 4 Q ~ ~ * ~ 2 ~ ) ~ ~ ~ ~ l ~ + ~ o 2 * ~ M ~ * 2 ~ * ~ l ~ ~ V B I ~ ~ ~ ~ * ( l ~ ~ / o ~ ~ ~ l o ~  
GO T O  100  
CPBA=(l.-UBA) 
CPBI= ( l . -VB I )  
~ O N T  INUE 
I F  ( IT *LEo ITMAX)  GO TO 110  
WRITE ( 6 r 1 5 0 )  J ~ X O J ~ C P O ~ J ~ r C P I ~ J ~ r V T O I V i I , W X 1 J U O O ~ W X 1 J U O I * W X l J U O ~ W  

1R1 JUO 

lQJU 
WRITE ( 6 r 1 6 0 )  WX1QJUO~WX1QJUI~WX1QJU,WRdQJUIWXQJU~WRQJUO~~RQJUI~WR 

WRITE ( 6 r l 8 0 )  CPBA,CPBIIWXBQJU,WREQJUIRHOO(J) 
CONTINUE 
XXX=XXX+(C/N) 
CONTINUE 
RETURN 

FORMAT ( 1 X t l H J , 7 X ~ 5 H X O J / C ~ 8 X ~ 3 H C P O ~ 9 X ~ 3 ~ ~ P I ~ 8 X ~ 3 H V T O ~ l O X ~ ~ H V T I ~ 6 X ~  
1 7 H W X 1 J U 0 0 ~ 6 X ~ 7 H Y X 1 J U O I ~ 7 X ~ 6 H W X l J U O ~ 7 X ~ 6 H U R l J U O ~  

FORMAT ~ l 9 X ~ 7 H W X 1 Q J U O ~ 6 X ~ 7 H N X l Q J U I I 7 X , 6 H W X 1 Q J U I 7 X ~ 6 H W R l Q J ~ ~ 8 X ~ S H U X  
~ Q J U I ~ X I ~ H W R Q J U O ~ ~ X I ~ H W R Q J U I * ~ X * S H W R Q J U )  

FORMAT (lX*I3r3(2X*F10.5)*6(2X*Ello4)) 
FORMAT (13X,8(2X*E11.4))  
FORMAT ( ~ ~ X I ~ H C P B A ~ ~ X ~ ~ H C P B I I ~ X I ~ H U X ~ Q J U ~ ~ X ~ ~ H W R B Q J U ~ ~ X ~ ~ H R H O O ~ ~ O O  

1 Y / )  
FORMAT ( 1 0 X 1 2 ~ 2 X ~ F l l o S ) ~ 3 X ~ 2 ~ 2 X ~ E l l o 4 ) r f 1 0 . 4 / )  
FORMAT ( lH l r20HNACELLE SURFACE SOLNplOX948HALL PERTURB VEL ARE ON 

lEQ%IV INCOMP NACELLE SURFI~OXIZ~HCENTER BOOY RHO0 AND PRESS//) 
END 

K1210  
K 1 2 2 0  
K1230  
K1240  
k1250 
K 1 2 6 0  
K1270  
K 1 2 8 0  
K 1 2 9 0  
K1300  
K1310  
K1320  
K1330  
K1340  
K1350  
K 1 3 6 0  
K1370  
K1380 
K1390 
K1400  
K1410 
K1420  
K1430 
K 1 4 4 0  
K1450 
K1460 
K1470 
K1480  
K 1 4 9 0  
KlSOO 

6 1 5 2 0  
K 1 5 3 0  
K 1 5 4 0  
k1550 
K1560  
K1570  
K1580  
K1590 
K1600 
K1610 
K1620 
K1630 
K 1 6 4 0  
K 1 6 5 0  
K 1 6 6 0  
K1670 
K1680 
K 1 6 9 0  
K1700 
K1710  
K 1720  
K 1 7 3 0  
K 1 7 4 0  
K1750 
K 1760- 

K151!-! 
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C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

10  

20 
C 
C 
C 
C 
C 
C 

30 

OVERLAY(RINGe490) 
PROGRAM BNDLYR 

THIS OVERLAY EXTRAPOLRTES THE VELOCITIES I N  THE TRAILING EDGE 
REGION OF THE NACELLE AND COHPUTES THE BOUNDARY LAYER ON THE 
NACELLE. THEN THE NACELLE COORDINATES ARE MODIFIED FOR THE 
DISPLACEWENT THICKNESS. 

COMMON /CORD/ X ~ 1 7 0 ~ ~ R ( ~ 7 0 ~ ~ C ~ R A V G ~ N N ~ N ~ D M I N ~ T ~ l 7 O ~ ~ R B ~ l 7 O ~ ~ X B N  
COMMON /ONE/ R O U T ~ 1 7 ~ ~ r R I N ~ 1 7 0 ) ~ Y ~ D M A X ~ X I ~ l 7 O ~ ~ X I O ~ l 7 O ~ ~ A L P H O ~ l 7 O ~  

l ~ A L P H 0 0 ~ 1 7 0 r l ~ r X B L ~ l 7 O ) r ~ L P T ~ l 7 O ~ r A L P T H ~ l 7 O ~ ~ D R D X ~ l 7 O ~ ~ D R D X H ~ l 7 O ~ r  
ZLA?jr ITrITMAX 

COMMON /TWO/ IPrCAYrGAM(170)rGQ(17O~rALPOO~l7O~l) 
COMMON /THREE/ V O U T ( 1 7 0 ) r V I N ( 1 7 0 )  
COMMON /FOUR/ X O V C ~ 1 7 0 ) ~ R 0 ~ 1 7 0 ) r R I ~ l 7 O ~ ~ D E L O ~ l 7 O ~ r D E L I ~ l 7 ~ ~ ~ W L S ~ 4 O  

1 ) r D O L D 0 ~ 1 7 0 ) r D O L D I ( l 7 O ) ~ U N R R E F ~ S A M ~ X F O R ~ X A F T  
DIMENSION U O W O ( 1 7 0 ) r  u O U R I ( 1 7 0 ) r  T H E ( 1 7 0 ) r  H ( 1 7 0 ) r  DELST(170) r  X L  

l S ( 4 0 ) r  Y L S ( 4 0 i l ) r  R E S I D ( 4 0 r l ) r  S U M ( l ) r  A L S ( 3 r 3 ) r  B L S ( 3 * 1 ) *  CLSO(40 
29219 C L S I ( 4 0 c 3 ) r  DDEL(170)  

REAL JOHNeLAMrM 

EXTRAPOLATE OUTER SURFACE VELOCITIES FROM XFOR PERCENT CHORD T O  
TRAIL ING EDGE BY LINEAR LEAST SQUARE F I T  OF VELOCITIES 
BETWEEN XFOR AND XAFT PERCENT CHORD 

L=O 
DO 10  J = l r N  
JOHWXBL ( J )  /C  
I F  (JOHNoLToXFOR) GO TO 10  
I F  (JOHNoGToXAFT) GO T O  10  
L=L+l  
XLS ( L 1 =XBL ( J 
YLS (Lr 1) =VOUT ( J )  
CONTINUE 
C A L L  LSQPOL ( X L S r Y L 6 r W L S r R E S I D r L r S U M ~ l r A L S r B L S ~ 2 r C L S O r 4 O r 3 )  
DO 20 J=-1 t N  
JOHN=XBL (J) /C 
I F  (JOHN.LT.XFOR1 GO TO 20 
VOUT (J) =BLS( 1 9  1) + 6 ~ 6 ( 2 ~ 1  )*XBL ( J )  
CON7 INUE 

EXTRAPOLATE INNER SURFACE VELOCITIES FROM XFOR PERCENT CHORD TO 
TRAILING EDGE BY PARABOLIC LEAST SQUARE F I T  OF VELOCITIES 
BETWEEN XFOR AND X A F T  PERCENT CHORD AND LAST OUTER SURFACE 
VELOCITY FROM ABOVE 

LrO 
DO 30 J - l r N  
JOHN=XBL (J) /c 
I F  (JOHNoLTsXFOR) GO TO 30 
I F  (JOHNoGTeXAFT) GO TO 30 
LtCa 1. 
XLS (L 1 =XBL (J )  
Y L S ( L r l ) = U I N ( J )  
CONTINUE 
LtL+ 1. 
XLS(L)?XBL(N) 
YLS (Lr 1) =VOUT (N)  

DO 40 J = l r N  
C A L L  LSQPOL ( X L S r Y L S r W L S r R E S I D r L r ~ U M ~ l ~ A L S r B L S , 3 r C L S 1 ~ 4 0 ~ 3 )  

L 10  
L 20  
L 30 
L 4 0  
L 41 
L 4 2  
L 43 
L 50 
L 60 
L 7 0  
L 80 
L 9 0  
L 1 0 0  
L 110  
L 120 
L 130  
L 140  
L 150 
L 160  
L 170 
L 180  
L 190  
L 200  
L 210  
L 220  
L 230  

L 250 
L 260 
L 270  
L 280 
L 290 
L 300 
L 310  
L 320  
L 330 
L 340  
L 350  
L 360 
L 370 
L 3 8 0  
L 390  
L 400  
L 4 1 0  
L 420  
L 430  
L 4 4 0  
L 4 5 0  

L 4 7 0  
L 480  
L 4 9 0  
L 500 
L 5 1 0  
L 520 
L 5 3 0  
L 5 4 0  
L 550 
L 5 6 0  
L 570 

L 240  

L 16-0. 
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40  
C 
C 
C 

50 

60 
C 
C 
C 
C 

70  

80 
90 

100 
C 
C 
C 

110 

120 
130  
140  

C 
C 
C 
C 

150 

JOHN=XBL (J 1 /C 
I F  (JOHNeLT.XFOR1 GO TO 40 
V I N ( J ) = B L S ( l r l ) + ( B L 5 ( 2 ~ l ) * X B L ( J ) ) 4 ( B L S ( 3 * l ) ~ ( X B L ( J ) * * 2 ) )  
CONTINUE 

INTERPOLATE FOR VEL! AT INPUT X 

LUG=NN-l 
DO 50 I=2 rLUG 
BLAIR=X( I )  
CA.LL MTLUP ( B L A I R ~ G L O S S ~ ~ ~ N * ~ ~ O * ~ I I P * X B L * V O U T )  
CALL MTLUP ( B L A I R I T I M I ~ ~ N I ~ ~ O ~ ~ ~ I P I X B L ~ V I N )  
UOURO(I)=GLOSS 
U O U R I ( I ) = T I M  
CONTINUE 
UOURO( l )=VOUT( l )  
U O U R I ( l ) = V I N ( l )  
UOURO(NN)=VOUT(N) 
UOURI(NN)=VIN(N) 
DO 60 I ’ l rNN 
JoHN=X( I ) /C  
I F  (JOHN*LT**OE) UOURI( I ) ”UOURO( l )  
CONTINUE 

COMPUTE OUTER BOUNDARY LAYER AND MODIFY OUTER WING COORDINATES FOH 
DISPLACEMENT THICKWESS 

C A L L  BLYR (XIROINN,UOUROIUNRREFIIHE,HIDELST) 
DO 100 I = l r N N  
D E L O ( I ) = ( ( D E L O ( I ) * S A M ) + ( I T * D E L S T ( I ) ) ) / ( S A ~ + I T )  
I F  (IT.EQ.1) 70980 
ROUT ( I ) = R O (  I) + (DELO( I) /2.) 
GO TO 9 0  
ROUT( I )=RO( I )+DELO( I )  
DDEL(I)=DELST(I)-DOLDO(I) 
DOLDO(I )=DELST( I )  
CONTINUE 

F IND NEW DMAX 

DO 140 I - l e N N  

ELIZ=ROUT(I)  
I F  (I.EQe1) 1109120 

GO TO 140  

EL IZzROUT ( I) 
CONTINUE 

I F  (ROUT(1) *GT*EL IZ )  1309140 

OMAX=2o*EL I Z  
WRITE ( 6 9 2 3 0 )  I T ~ D H A X ~ ~ X O V C ~ I ~ ~ X ~ I ~ ~ ~ U O U R O ~ I ~ ~ D E L S T ~ I ~ ~ D D E L ( I ~ ~ D E L 0  

l ( I ) r R O U T ( I ~ ~ T H E ( I ) r H ( I ) r I = l r N N )  

COMPUTE INNER BOUNDARY LAYER AND MODIFY INNER WING COORDINATES FOR 
DISPLACEMENT THICKNESS 

CALL BLYR ( X I R I * N N ~ U O U R I ~ U N R R E F , I H E ~ H I D E L S T )  
DO 180 I = l r N N  
DELI(I)=((DELI(I)*SAM)+(IT*DELST(I)))/(SAM+IT) 

RIN(I)=RI(I)-(DELI(I)/2.) 
GO TO 170 

I F  (IToEQ.1) 1509160 

L 580 
L 590 
L 6 0 0  
L 610  
L 620 
L 630 
L 640 
L 650 
L 660 
L 670  
L 680 
L 690 
L 7 0 0  
L 710 
L 720 
L 730 
L 7 4 0  
L 750 
L 760 
L 7 7 0  
L 780 
L 790 
L eo0 
L A10 
L 820 
L 930 
L 8 4 0  
L 850 
L 860 
L 870 
L 880 

L 900 
L 910  
L 920  
L 930  
L 940 
L 950 
L 960 
L 9 7 0  
L 980 
L 990 
L l O O O  
L l O l O  
11020 
11030 
L 1040  
L 1050  
11060 
11070 
11080 
L 1090  
L l l O O  
L l l l O  
11120 
11130 
11140 
11150 
11160 
1a170 

L 990 
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160 
170 

180 
C 
C 

' C  

190 

200 
210 
220 

R I N ( I ) = R I ( I ) - M E L I ( I )  
DDEL(I )=DELST(~)-DOLDI( I )  
DOLDI (1 )=DELST t I I 
CONTINUE 

F I N D  NEW DWIN 

DO 220  I=l.NN 
I F  (I.EQ.1) '1909200 
EL I Z=R I N  ( I B 
GO TO 220 

EL IZ=R I N  t I 8 
CONTINUE 

I F  ( R I N ( 1 )  .L?.ELIZ) 2109220 

11180 
11190 
11200 
11210 
L 1220 
L 1230 
11240 
L 1250 
L 1260 
L 1270 
11280 
11290 
11300 
11310 

DMIN=2.*ELIZ L 1320 
WRITE (6.240) I T ~ D Y ' I N ~ ~ X O V C ~ I ~ r X ~ I ~ , U O U R I ~ I ~ ~ D E L S T ~ I ~ ~ D D E L ( I ~ ~ D E L I  L 1 3 3 0  

C 
C 
230 FORMAT ( lHl r4Xv44HOUTER WING SHAPE MODIFIED BY BOUNDARY LAYER./4X* 

ISOHVELOCITIES ARE ONES USED TO COMPUTE BOUNDARY L A Y E R / / 4 X * 3 H I T = r I 3  
2 ~ 4 X ~ 5 H D ~ A X = r F 9 . 4 / / 7 X 1 3 H X / C ~ 9 X ~ l H X I S X , 5 H U O U R O ~ S X ~ 5 H D E L S ~ ~ 6 X ~ 4 H D D E L ~  
36X~4HDELO.6X~4HROUT17X,3HTHE~9XllHH//(9FlO.4))  

240 FORMAT ( l H l r 4 X 1 4 4 H I N N E R  WING SHAPE MODIFIED BY BOUNDARY LAYERO/4X9 
1SOHVELOCITIES ARE ONES USED TO COMPUTE BOUNDARY LAYER//4X,3HIT=r I3 
2 ~ 4 X ~ 5 ~ W I N ~ r F 9 ~ 4 / / 7 X ~ 3 H X / C , 9 X I 1 H X ~ 5 X ~ 5 H U O U R I ~ S X ~ S H D E L S T ~ 6 X ~ 4 H D D E L ~  
36X,4HMLI17X,3HRIN*7XI3HTHE,9XI1HH/ / (9FlO.4) )  

EFCD 

L 1340 
L 1350 
11360 
11370 
11390 
L 1390 
11400 
11410 
11420 
11430 
11440 
L 1450 
11460 
11470 
11480 
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10 
c 
C 
c 

20 
C 
C 
c 

30 
C 
C 
C 

40 

50 

60 
c 
C 
C 

SUgROUTINE BLYR ~ S ~ R ~ N X ~ U O U R I U N R R E F ~ T H E ~ H ~ D E L S T I  

THIS SUBRDUT1NE.COMPbiES THE 1NCOMPRESSIBLE TURBULENT AXISYHMETRIC 
BOUNDARY LAYER USING A SLEGHT MODIFICATION OF TRUCKENBRODTS METHOD 
PACE 584 - 585 OF BOUNDARY LAYER THEORY BY SCHLICHTINGr4TH EDITION 

TRANSITION IS ASSUMED AT THE LEADING EDGE. 

REAL IARGIIARGLIIUOUR~L 
DIWEWION R(20019 S(200)r UOUR(2OO)r IUOUR(2OO)r UAOUR(2OO)r REY(2 
10O)r CF(200)r ARG(2OO)r IARG(2OO)r THE(2OO)q RTHE(200)r B1200)9 AR 
2Q.tZOO)r IARGL(2OO)q L(2OO)r TLl(13)r TH(13)r H(200)r DELST(200)r S 
3QRTXI(ZOO) 
00 10 IslrNX 

CONTINUE 
IF ( U O U R ( I ~ ~ t T ~ ~ 0 0 0 0 1 )  UOUR(I)=0o00001 

U AVE OVER U REF 

CALL INT (SrUOURrNXqIUOUR) 
UAOUR(~)=UOC)R(~) 
DO 20 1=2rNX 
UAOUR(I)=IUWR(I)/S(I) 

CF 

X I  

SQRTXI (1 1 = 0 .  
DO 60 I-lrNX 
SQRTXI(I)=(IARG(I))**2 
CONTINUE 

L 

DO 70 I=lrNX 
RTHE(I)=UNRREF*UOUR'(I)*THE(I) 
IF (RTHE(1)oLT.l.) RTHE(I)=l* 
B(I)=.07*ALOGlO(RTHE(I))-o23 

H 10 
H 20' 
M 30 
H 40 
H SO 
M 60 
M 70 
M 80 
M 90 
M 100 
M 110 
H 120 
M 130 
M 140 
H 150 
M 160 
M 170 
M 180 
M 190 
M 200 
M 210 
M 220 
M 230 
M 240 
M 250 
M 260 
M 270 
M 280 
M 290 
M 300 
H 310 
M 320 
M 330 
M 340 
M 350 
M 360 
M 370 
M 380 
M 390 
H 400 
M 410 
M 420 
M 430 
M 440 
M 450 
M 460 
M 470 
N 480 

H 500 
M 510 
M 520 
M 530 
M 540 
M 550 
M 560 
M 570 
M 580 
H 590 
M 600 

-M. 999 
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70 

80 
90 
100 
C 
C 
C 

110 

I F  (B(1)oLToOo) B ( I ) = O o  M 610 
ARGL(I~=(B(I)-ALOG(UOUR(I~)~*2.~SQRTXI(I~ M 620 
CALL I N T  (SQRTKIIARCL*YXIIARGL) M 630 
L ( 1 t = O .  M 640 
DO 100 I=2rNX M 650 
I F  (SQRTXI(I) .EQ.O.) GO TO 80 M 660 
L(I)=ALOG(UOUR(I))+IAR~L(I)/SQRTXI(I)**2 M 670 
GO TO 90 M 680 
L ( I ) = O o  M 690  
I F  ( L ( 1 ) o G T o l o )  L ( I ) = l .  M 700 
I F  (L(1)  oLTo-ol9) LI(I)=-o319 M 710  

H 7 2 0  
H AND DELTA STAR M 7 3 0  

M 740 
DATA T L / - ~ 1 9 3 r ~ ~ ~ 7 2 r - . ~ 5 7 r - . 1 3 1 r - . l r - . O S 1 . O I . O S ~ o l ~ o 3 1 ~ ~ 1 o 7 ~ ~ o / ~ T ~  M 750 
1 / 2 o 4 ~ 2 ~ 2 ~ 2 ~ 0 ~ 1 ~ 8 ~ 1 ~ 6 4 5 ~ 1 o 4 9 5 1 l ~ 4 1 1 o 3 3 5 ~ 1 o 2 9 S ~ 1 o 2 ~ 1 o 1 S 1 ~ ~ 1 2 ~ 1 o 0 7 ~ ~ ~  M 760 
ZTL/ 13/ M 7 7 0  
I P=- 1 M 780 
DO 110  I = l r N X  M 790  
TEPl=L ( I 1  H R O O  
CALL MTLUP ( T E P ~ ~ T E P ~ ~ ~ ~ N T L I ~ ~ ~ I ~ I P ~ T L ~ T H )  M R10 
H (  1) =TEP2 H 820 
DELST ( I  1 =THE ( I) *H ( I) M 830 
CONT I NUE M A40 
RETURN M 850 
EhlD Y 860- 
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C 
C 
C 
C 

10  

20 
30 
40 

50 
60 

70 

BO 

90 
100  

SUBROUTINE INT  (X~YINIANS) 

THIS SUBROUTINE I S  USED BY SUBROUTINE BLYR TO INTEGRATE Y OX FROM 
X ( 1 )  T O  X ( 1 ) .  RESULIT EQUALS ANS(1)o I RUNS FROM 1 TO No 

DIMENSION X ( 1 0 0 ) r  Y ( 1 0 0 ) r  ANS(100) 
StJH=O. 0 
ANS (1  1 =O.  
I F  (NoEQ.2) GO TO 90 
I=l 
GO. T O  40 
xA=X (11-X (1-1) 
XB=X ( I + 1 1  -x  (I 1 
YA=Y ( 1 I - Y  (1-1 1 
YB=Y ( I + 1) -Y ( I) 
I F  (XAoEQoOooORoXBoEQ.Oo) GO T 0 , 2 0  
I F  (YA/XA.GE~Z.*YB/XB.ANDOYA/XA.GEOO.)  GO TO 20 
I F  ( Y A / X A o L E o 2 o * Y B / X B o A N D ~ Y A / X A o L E o O o )  GO TO 20 
S U M F W = X B ~ ( Y ( I ) + Y B / 3 . + ( X A * * 2 * Y B + X B * * 2 * Y A ) / ( ~ o * X A * ( X A + X B ) ) ~  
GO TO 30 
SUMF~=XB*((Y(I)+Y(I+l))/2o) 
I F  (1oEQ.N-1) GO TO! 80 
I = I + l  

XB=X ( I+1) -x  ( I ) 

YB=Y ( I + l ) - Y  (I 1 
I F  ~XAoEOoOooORoXBoEQoOo~ GO TO 50 
I F  ~ Y B / X B o G E o 2 o * Y A / X A o A N D o Y B / X 5 o G E o O o ~  GO TO SO 
I F  ~ Y B / X B o L E o 2 o * Y A / X A o A N D o Y B / X 6 ~ ~ E o O o ~  GO TO SO 

XA=X ( I ) - X  (1-1 1 

Y A = Y ( I ) - Y ( I - l )  

S U H B K = X A * ( Y ( I ) - Y A / 3 . - ( X B * * 2 * Y A + X A * * 2 * Y B ) / ( 6 . * X B * ( X A + X B ) ) )  
Go T O  60 
SUHBK=XA*((Y(I)+Y(I-l))/2o) 
I F  ( IoEQ.2) GO TO 70 
SUH=SUH+(SUHFW+SUMBK)/2. 

GO TO 1 0  
SUH=SUMBK 
ANS ( 2  1 =SUM 
GO TO 10 
SUM=SUH+SUMFW 
ANS (N 1 =SUM 
GO TO 100  

ANS ( 1) =SUM 

ANS(Z)=((Y(l)+Y(2))/2o)*(X(2)-X(l)) 
CON.TINUE 
RETURN 
END 

M 1 0  
N 20 
N 3 0  
N 40 
N 50 
N 6 0  
N 7 0  
N 80 
N 90 

N 1 1 0  
N 1 2 0  
N 130 
N 140 
N 1 5 0  
N 160 
N 170 
N 180 
N 190  
N 200 
N 210  
N 220 
N 230 
N 240 
N 250 
N 260 
N 270  
N 280 
N 290 
N 300 
N 3 1 0  
N 320 
N 330 
N 340 
N 350 
N 360 
N 370 
N 380 
N 390 
N 4 0 0  
N 4 1 0  
N 420 
N 430 
N 440 
N 4 5 0  
N 460 
N 470- 

N i o 0  
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C 
C 
C 
C 
C 
C 
C 

10 
a 

30 

40 

50 

60 

70 

SUBROUTINE LSQPOL ( X ~ Y ~ W ~ R E S I O ~ N ~ S U M I L , A I B , H I C I N H A X I H H A X )  

T H I S  SUBROUTINE I S  A LEAST SQUARE POLYNOMIAL F IT .  GIVEN A SET OF 
VALUES OF AN INDEPENDENT VARIABLE X WITH ASSOCIATED WEIGHTS W AND 
A SET OF CORRESPONDING VALUES O F  Y o  THE ROUTINE DETERMINES THE 
COEFFICIENTS i)F THE POLYNOMIAL OF OEGREE M - 1  WHICH GIVES THE BEST 
F I T  I N  THE LEAST SQUARES SENSE TO THE SET OF Y o  

DIMENSION X(NMAX)r Y(NHAX,L)r RESID(NMAXrL)r  A(MHAX9HMAX)r BtMHAX9 

DO 20 I r l r N  
C ( I 9 l ) = l * O  
DO 30 J=29H 
DO 30 I = l r N  
C ( I r J ) = C ( I r J - l ) * X ( I )  
DO 40 I = l r M  
DO 40 J = l r H  

DO 4 0  K = l r N  
A ( I r J  =A(I,J)*C(KeI)*C(KrJ)*W(K) 
DO 50 J= l ,L  
DO 50 I - l r M  

DO 50 K = l r N  
B (  I r J ) = B ( I r J )  + C ( K r I  ) * Y  (KrJ ) *W ( K )  
CALL HATINV (ArHrBr~LrDETERM9RESIDrCrMMAXIISCALE) 
DO 70 J= l rL  

1L)r  C(NMAXrH)r  SUH(L)r  W(NHAX) 

A ( 1 9  J =O .O 

B ( I * J  '0.0 

SUM (J) =O.O 
KK =H 
DO 60 K s l r H  
C (K  r 1 1 =B (KK 9 J) 
KK=KK-l 
DO 7 0  I=19N 
~ E S I D ( I r J ~ = P O L Y E l ~ X ( I ~ r H , C ~ - Y ~ I r J )  
SUM (41 =SUM (J)  *RESID ( I J) **2*W (1  1 
RETURN 
END 

0 10  
0 20 
0 30 
0 40 
0 50 
0 60 
0 7 0  
0 80 
0 90 
0 100  
0 110  
0 120 
0 130 
0 140 
0 150 
0 160 
0 170 
0 180 
0 190 
0 200 
0 210 
0 220 
0 230 
0 240 
0 250 
0 260 
0 270 
0 280 
0 290 
0 3 0 0  
0 310 
0 320 
0 330 
0 340 
0 350 
0 360 
0 370- 
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C 
C 
C 
C 

C 
C 
C 
10 

20 

C 
C 
C 

30 

40 
50 

60 
70 

80 

90 
C 
C 
C 

100 

110 

120 

130 
140 

C 
C 
C 
150 

SUBROUTINE MATINV ( A ~ N ~ B ~ M ~ O E T E R H ~ I P I V O T , I N D E X T N M A X ~ I S C A L E )  P 10  
P 20 

THIS SUBROUTINE SOLHES THE MATRIX EQUATION AX=B WHERE A I S  A P 30 
SQUARE COEFFICIENT M A T R I X  AND B I S  A MATRIX OF CONSTANT VECTORS. P 4 0  

P 50 
DIMENSION I P I V O T ( N I r  A(NMAXrN1. B(NMAX*M)r INOEX(NNAXI~) P 80 
EQUIVALENCE ( IROYIJROY)~  (ICOLUM,JCOLUM)* fAHAX*T*SWAP) P 90 

I N 1  TIAL,IZAT ION 

ISCALE-0 

DETERM=l.O 
DO 20 J = l t N  
IP IVOT (J)  =O 
DO 360 I = l r N  

SEARCH FOR PIVOT ELEMENT 

Rl=lOeO**lOO 
R 2 = 1 0 O / R l  

AMAX=O e 0 
DO 70 J = l r N  
I F  ( I P I V O T ( J ) - l )  30970r30 
DO 60 K=1rN 
I F  ( I P I V O T ( K ) - l )  40,60*400 
I F  (ABS(AMAX)-ABS(A(J*K) ) )  5 0 9 6 0 r 6 0  
I R O W z J  
ICOLUM=K 

CONTINUE 
CONTINUE 
I F  ( A M A X )  9 0 r 8 0 r 9 0  
DETERM=O.O 
ISCALE-0 
GO TO 400 
I~IVOT(ICOLUM)=IPIVOT(ICOLUM)+~ 

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL 

I F  (IROW-ICOLUMI 1 0 0 ~ 1 4 0 * 1 0 0  
DETERH=-DETESM 
DO 110 L = l r N  
SWAP=A(IROWrL) 
A~IROYIL)=A(ICOLUMIL) 
A(ICOLUH*L)=SWAP 
I F  (HI 1 4 0 r 1 4 0 ~ 1 2 0  
DO 130 L = l r M  
SWAP=B(IROW*L) 
8 ( IROW*L)=B( ICOLUMrL)  

( ICOLUM r L 1 ‘SWAP 
I N D E X ( I * l ) = I R O W  
INOEX( I I~ )= ICOLUH 
PIVOT=A(ICOLUMIICOLUM) 
I F  (PIVOT) 1 5 0 r 8 0 r 1 5 0  

SCALE THE DETERMINANT 

PlVOTI=PIVOT 

AMAX=A(JrK) 

P 100 
P 1 1 0  
P 120 
P 1 3 0  
P 1 4 0  
P 150  
P 1 6 0  
P 1 7 0  
P 180  
P 190  
P 200 
P 210 
P 220 
P 230 
P 240 
P 250  
P 260 
P 270 
P 280 
P 290  
P 300 
P 310  
P 320 
P 330 
P 340 
P 350 
P 360 
P 370 
P 380 
P 390 
P 400  
P 410 
P 4 2 0  
P 430  
P 440 
P 4 5 0  
P 460 
P 470 
P 480 
P 490 
P 500  
P 510  
P 52‘0 
P 530 
P 540 
P 550 
P 560 
P 570  
P 5 8 0  
P 590 
P 6 0 0  
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160 

170 

180 
190  

200 

210 
220 

230 

240 
250 

260 

270 
C 
C 
C 

280 

290 
300 
C 
C 
C 
310 

320  

330 

340 
350 
360  
C 
C 
C 

370 

I F  (ABS(DETERM)-Rl)  1 8 0 r 1 6 0 r 1 6 0  
DETERM=DETERM/Rl 
ISCALE=ISCALE+l  
I F  (ABS(DETERM)-Rl) 2 1 0 r 1 7 0 * 1 7 0  
DETERM=DETERM/Rl 
ISCALE=ISCALE*l  
GO TO 210 
I F  (ABS(DETERM)-RZ) 1 9 0 r 1 9 0 r 2 1 0  
DETERM=DETERM*Rl 
ISCALE-ISCALE-1 
I F  (ABS(DETERM)-RZ) 2 0 0 1 2 0 0 r 2 1 0  
DETERM=DETERM*Rl 
ISCALEt ISCALE-1 
I F  ( A B S ( D I V O T I ) - R l )  240,2209220 
P I V O T I = P I V O T I / R l  
ISCALE=ISCALE+l  

P IVOTI=PIVOTI /R1  
I sCALE=ISCALE+ l  
GO TO 270 
I F  (ABS(P IVOTI I -R2)  2 5 0 r 2 5 0 * 2 7 0  
P I V O T I = P I V O T I * R l  
ISCALEt ISCALE-1 

P I V O T I = P I V O T I * R l  
ISCALE=ISCALE-l  
DETERM=DETERM*PIVOTI 

DIVIDE PIVOT ROW BY PIVOT ELEMENT 

I F  ( A B S ( P I V O T I ) - R l )  2 7 0 r 2 3 0 r 2 3 0  

I F  (ABS(P IVOTI ) -R2)  2609260,270 

A(ICOLUM~ICOLUM)=l.O 
DO 280 L = l r N  
A ( I C O L U M ~ L ) = A ( I C O L U H I L ) / P I V O T  
I F  ( M I  310*310,290 
DO 300 L = l , M  
B(ICOLUM,L)=B(ICOLUM*L)/PIVOT 

REDUCE NON-PIVOT ROWS 

DO 360 L1=1,N 

T=A(Ll,ICOLUM) 
A(Ll,ICOLUM)=O.O 
DO 330 L = l r N  
A ( L l r L ) = A ( L l r L ) - A ( I C O L U M I L ) 9 T  
I F  ( M I  3 6 0 r 3 6 0 r 3 4 0  
DO 350 L= l ,M 
B ( L l , L ) = B ( L l r L ) - B ( I C O L U M * L ~ * T  
CON1 INUE 

INTERCHANGE COLUMNS 

DO 3 9 0  I - l r N  
L=N* 1- I 
I F  I I N D E X ( L I I ) - I N D E X ( L I ~ ) ~  3 7 0 r 3 9 0 ~ 3 7 0  
JROW=INDEX(L,l) 
JCOLUH=INDEX(L*Z) 
00 380 K = l r N  
SWAPzA(KeJR0W) 
A (Kr  JROW)=A (K 9 JCOLUM) 

I F  (L 1-ICOLUM) 3 2 0  9 3 6 0  9 3 2 0  

P 610  
P 420  
P 630  
P 640  
P 650  
P 660  
P 670  

P 690 
P 700 
P 710 
P 720  
P 730 
P 740 
P 750 
P 760 
P 770 
P 780 
P 790 
P 900 
P R10 

P 830  
P 840  
P 850  
P 8 6 0  
P 870 

P 890  
P 900 
P 9 1 0  
P 920 
P 930  
P 940  
P 9 5 0  
P 9 6 0  
P 9 7 0  
P 9 8 0  
P 990' 
PlOOO 
P l O l O  
P1020  
P1030 
P1040  
p1050 
P1060  
P1070  
P1080 
P1090 
P1100 
P l l l O  
P1120  
P1130  
P1140  
P1150  
P1160  
P1170 
P1180 
P1190  
P1200  

P hao 

P a20 

P 8ao 
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A(K,JCOLUM)=SWAP 
380 CONTINUE 
390 CONTINUE 
400 RETURN 

END 

APPENDIX A - Continued 

P1210 
P 1220 
P1?30 
pi240 
P1250- 
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FUNCTION POLYEl (XqHpC) 
C 
C THIS IS A FUNCTION USED BY SUBQOUTINE LGQPOL 
C 

DATA BIG/0377777777777/ 
DIMENSION C ( M )  
IF (H-1) 30r40r10 

POLYEl=C(l) 
DO 20 IZlrN 

10 N=M-1 

20 POL YE^ =X*POLYE i +C ( I + 1 
RETURN 

30 POLYElrBIG 
RFTURN 

60 POLYEl=C(l) 
RETURN 
END 

Q 10 
Q 20 
Q 30 
Q 40 
Q 50 
Q 60 
0 70 
Q 80 
Q 90 
Q 100 
Q 110 
Q 120 
Q 130 
Q 140 
Q 150 
Q 160 
0 170- 
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O v E R L A Y ( R I N G , S r O )  
PROGRAM C R I T M  

C 
C T H I S  OVERLAY COMPUTES C R I T I C A L  MACH NUMBER 
C 

COMMON /CORD/ X~170~,R(~70~rC~RAVGINN,N,DYINII(170)rRB~l7O)~X~N 
COMMON / F I V E /  C P O ( 1 7 O ) r M C R  
RFAL MCR 
C A L L  MCRIT ( C P O r M C Q )  
R F T U R N  
EhlD 

R 10 
R 20 
R 30 
R 40 
P 50 
R 60  
R 70 
R 80 
R 9 0  
R 1 0 0  
R 110- 
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C 
C 
C 
C 

10 

20 
30 

40 

50 

SUBROUTINE MCRIT (CPO<,MCR) 

THIS SUBROUTINE COMPUTES CRITICAL, 
ON THE OUTER SURFACE PRESSURE 

5 10 
s 20 

MACH NUMBER OF THE NACELLE BASET, s 30  
S 40 

COMMON / C O R D / . X ( 1 7 0 ) r R ( 1 7 0 ) r C r R A V G r N N , N  
DIMENSION CPO(170) 
REAL MCR 
A-0 . 
DO 30 J = l r N  
I F  ( C P o ( J ) )  1 0 ~ 3 0 r 3 0  

I F  (CPO(J).LT.A) A = C P O ( J )  
GO TO 30 
A=CPO ( J )  
CON1 INUE 
J=  1 
MCRo ~999 .  
C P = ( - ~ . / Y C R ) ~ ( ( ~ O - Y C R ) ~ ~ ~ . ~ ) * ( S Q R T ( I . * Y C R ) )  
I F  (CPeLToA) GO TO 50  

I F  (AeEQ.0.) GO TO 20 

MCRtMCR-.001 
J=J*1 

GO TO 40 
CON1 I NUE 
RETURN 
END 

I F  (J.GE.999) GO T O  50 

s 5 0  
s 60 

5 8 0  
5 00 
s 1'70 
s 1 1 0  
5 120 
S 1 3 0  
5 1 4 0  
S 150  
S I60 
S 1 7 0  
s 1 R O  
5 IC20 
s 2 0 0  
S 7 1 0  
s ?20 
5 2 3 0  
5 ? 4 0  
5 i J50 
5 260 
S ? 7 0 -  

s 7 0  

83 



APPENDIX A - Continued 

C 
C 
C 

10  
2 0  

30 

40 
50 

C 
C 
C 

OVERLAY(RINGI~~O)  T 1 0  
PROGRAM MASFLOW T 20 

T 30 
T y I S  OVERLAY COMPUTES V I / V I N  BY INTEGRATING THE INTERNAL MASS FLOW T 4 0  
A T  SOME X STATION. THE X STATION I S  PRESENTLY MIDCHORD BUT CAN T 41 
BE CHANGED BY CHANGING CARDS T 1709 T 3 2 0 ,  T 6509 T 970. T 42 

T 5 0  
COMMON /CORD/ X ( ~ ~ O ) ~ R ( ~ ~ O ) ~ C I R A V G I N N I N I D M I N , T ( ~ ~ O ) ~ R B ( ~ ~ O ) ~ X ~ ~  T 60 
COMMON /ONE/ R O U T ~ l 7 0 ~ ~ R I N ~ 1 7 0 ) ~ M I D N A X ~ X I ( l 7 O ~ ~ X I O ~ l 7 O ~ ~ ~ ~ P H O ~ ~ 7 O ~  T 7 0  

l r ~ L P H 0 0 ~ 1 7 0 r l ~ r X B L ~ l 7 O ) ~ A L P T ~ l 7 O ) ~ A L P T H ~ l 7 O ~ ~ D R D X ~ ~ 7 O ~ ~ D R D X H ~ l 7 O ~ ~  T 80 
~ L A M I I T I I T M A X  T 90 

COMMON /TWO/ I P t C A Y ~ G A H ( 1 7 0 ) r G Q ~ l 7 O ~ ~ A L P O O ~ l ~ O ~ l )  T 100 
COMMON / S I X /  N R H O * R A D ( ~ ~ O ) ~ V I V I N I R X X I R B X ~  T ,110 
DIMENSION RHOO(170) T 120 
REAL LAMIKSQIM T 1 3 0  

T 1 4 0  PRINT 150  
PRINT 130 T 1 5 0  
PRINT 140  T 1 6 0  
xxx=c/2* T 1 7 0  
CALL MTLUP ( X X X I R X X , ~ ~ N N I ~ ~ O , ~ ~ I P I X I R )  T 1 8 0  
CALL MTLUP ( X X X I T X X I ~ , N N I ~ ~ ~ ~ ~ ~ I P ~ X I T )  T 190 
RxX=RXX-tTXX/E.) T 200 
TFMP~=RXX/NRHO T 210  

T 220  
COMPUTE ALL R A O ( J )  T 2 3 0  

T 240 
DO 20 J=lrNRHO T 250 
I F  (JoEQoNRHO) GO TO 10  T 260  
R4D(J)=RXX-(J*TEMP9) T 270  
GO TO 2 0  T 280 
RAD (J)  =O T 290 
CONTINUE T 300 
V IVIN=O T 310 
xx=c/2. T 3 2 0  
CALL MTLUP ( X X , R B X I I ~ ~ N N , ~ ~ ~ ~ ~ ~ I P , X ~ R B )  T 330 

TFST=RBXI/RAVG T 350 
T 360  

MASS FLOW - DO 90  T 3 7 0  

I F  (XXoLE.XBN) QBXI=O. T 340 

DO 9 0  J=lrYRHO 

COMPUTE THE RHOOtJ) 

I F  (J.EQ.1) GO TO 30 
I F  (JeEQeNRHO) GO TO 4 0  
R y O O ( J ) = ( R A O ( J - l ) + R A D ( J ) ) / ( 2 . ~ R A V G )  
GO TO 5 0  
R H O O ( J ) = ( R X X + R A D ( J ) ) / ( ~ . * R A V G )  
GO TO 5 0  

CONTINUE 
I F  (RHOO(J).LE.TEST) GO TO 100  

VELOCITIES AT RHOO(J) - DO 60 

R H O O ( J ) = R A D ( J - l ) / ( 2 . * R ~ V G )  

Wx 1 JUO=O . 
W X 1 QJU=O . WR1 JUO=O 

WR1Q JU=O. 

T 380 
T 390 
T 4 0 0  
T 410  
T 420  
T 430  
T 440  
T 4 5 0  
T 4 6 0  
T 470  
T 480  
T 490 
T 500 
T 5 1 0  
T 5PO 
T 530 
T 5 4 0  
T 5 5 0  
T 560 
T 5 7 0  
T 580 
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50 

C 
C 
C 

70 
80 

90 
100  

C 
C 
110 
120  
130 

1 4 0  

WxQJU=O. 

WXBQJU=O. 
WRBQJU-0. 

DO 60 I = l r N  
D E L X I = X I ( I )  

EK=EKA (KSQ) 
SK-SKK (KSP) 

WRQJU=O o 

XX=(C/N)*oZS 

KSQ=(4o*RHOO(J)) / ( (DEL 

1 590 
T A 0 0  
T 610 
T 620 
T 630  
T 640 
T 450 
T 660  
T 670 
T 6 8 0  
T 690 
T 700 
T 710 
T 7 2 0  
T 730 
T 740 
T 7 5 0  
T 7'10 
T 770 
T 790 
T 7 3 0  
T G O O  

1 R 1 0  
T q20 
T S 3 0  
T n40  
T 450 
T 8 6 0  
T R 7 0  
T 460 

T 9 0 0  
T 910 
T O?O 
T 330 
T 940  
T 950 
T 960  
T 970 
T 980 
T 990  
T l n O O  
T l O l O  
T1020 
T1030 
T 1040 
T 1050 
T 1060  
T1070 
t10h0 
t1090 
T1100 
T l l l O  
t1120 
T1130 
71140  
T1150 
T1160 
T1170 
T l l A O  

T a90 
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150 FORMAT (lHlr21HHASS FLOW COHPUTATIONI~OXI~~HALL PERTURB VEL AND RA T1190 
1D ARE FOR EQUIV INCOMP GEOH//) T1200 

END TIEIO- 
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DERIVATION OF EQUATIONS (13) AND (23) 

The velocity induced in the x-direction at 5,,p6 by a distribution of vortex rings 
on a cylinder of radius p = 1 and of chord length c is found by use of equation (21). 
The result is 

Replacing the modulus k by its definition in equation (11) and rearranging the result, 
equation (B 1) becomes 

Equation (B2) must now be evaluated at po = 1 to obtain equation (13). Considering the 
first integral, at po = 1 and 5 = to, a singularity exists in the term containing the ellip- 
tic integral of the first kind K. To investigate this singularity, examine the integral in a 
small region extending E on each side of to 

where the terms multiplying K are approximated by setting 5 = 5,. The elliptic inte- 
gral K can be expanded in a series as a function of the complimentary modulus k' 
(ref. 23) in the following form 

kl 2m ((k')2 1) 
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where 

B - Continued 

( 5  - + 4 
k' = 

and Pochhammer's symbol is defined by 

and II/ is the digamma function (ref. 24). By using equation (B4) and letting E - 0, and 
therefore k' -L 0, it can be shown that the integral in equation (B3) goes to 0. Thus the 
principal value of the first integral in equation (B2) is found by treating it as an ordinary 
integral. 

For p, = 1, the value of the second integral in equation (B2) can be determined as 
follows. For 5 # to, the integrand is 0 when p, = 1. Hence the limit must be found as 
5 - 5, simultaneously with p, - 1 

1 1/x @o(5)Yo(5)  2(Po - 1)" 
d5 

( 5  - + ( 1  + Po)2 ( 5  - + ( P o  - '>" Po- lim 1 - 2n 
J 

where E % 1 because k % 1, and again the first te rm in the integrand is approximated 
by setting 5 = 5,. By defining a new variable 

5 - 5, 
E'E - 

Po - 1 

and requiring p, - 1 faster than E - 0 for a nontrivial solution, it is found that 
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E - 
= fQ lim to+€ Po - 1 d5 = lim lP0-' d 5 ' 

E ( y ) 2  + 1 €4 -- 
Po- 1 Po-1 Po-1 
E - 0  IS,-€ ( 5  - 5.y  + (Po - 1) 

so that 

where yo(.go) = r0 (t0)/A(. By substituting equation (B5) into equation (B2) and setting 
Po = 1 

(BO) 
u y  ( 5 0 , ~ )  - l/x ( y ~ ( ~ ) y o ( t )  E - K 

vca - s, 
Writing equation (B6) in summation form yields equation (13). Equation (23) is derived by 
a procedure analogous to the preceding derivation. 
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